Project description:Injury to the central nervous system (CNS) may result in lifelong loss of function due, in part, to the regenerative failure of CNS neurons. Major barriers to regeneration faced by injured CNS neurons include inhibitory proteins derived from myelin and the astroglial scar. Previously, we described the identification of a novel compound, F05, which promotes neurite growth from neurons challenged with inhibitory substrates in vitro, and promotes axonal regeneration in vivo (Usher et al., 2010). To identify additional regeneration promoting compounds, we used the microarray derived gene expression signature of F05 to query the Broad Institute Connectivity Map, a database of gene expression profiles for cells treated with >1,300 compounds. Unexpectedly, F05 induced changes in gene expression remarkably similar to those seen with a group of piperazine phenothiazine antipsychotics (PhAPs). We found that, in contrast to antipsychotics of other structural classes, PhAPs were able to promote neurite growth of CNS neurons cultured on two different glial-derived inhibitory substrates, but did not promote growth on a permissive substrate. Pharmacological studies suggest that the ability of PhAPs to promote growth depends on antagonism of calmodulin signaling, but not on dopamine receptor antagonism. Our findings shed light on mechanisms underlying neurite-inhibitory signaling, and suggest a potential pathway for development of novel treatments for CNS injury. 3 Biological Replicates of Vehicle Treated (0.05% DMSO) + 3 Biological Replicates of F05 Treated (5 μM)
Project description:Injury to the central nervous system (CNS) may result in lifelong loss of function due, in part, to the regenerative failure of CNS neurons. Major barriers to regeneration faced by injured CNS neurons include inhibitory proteins derived from myelin and the astroglial scar. Previously, we described the identification of a novel compound, F05, which promotes neurite growth from neurons challenged with inhibitory substrates in vitro, and promotes axonal regeneration in vivo (Usher et al., 2010). To identify additional regeneration promoting compounds, we used the microarray derived gene expression signature of F05 to query the Broad Institute Connectivity Map, a database of gene expression profiles for cells treated with >1,300 compounds. Unexpectedly, F05 induced changes in gene expression remarkably similar to those seen with a group of piperazine phenothiazine antipsychotics (PhAPs). We found that, in contrast to antipsychotics of other structural classes, PhAPs were able to promote neurite growth of CNS neurons cultured on two different glial-derived inhibitory substrates, but did not promote growth on a permissive substrate. Pharmacological studies suggest that the ability of PhAPs to promote growth depends on antagonism of calmodulin signaling, but not on dopamine receptor antagonism. Our findings shed light on mechanisms underlying neurite-inhibitory signaling, and suggest a potential pathway for development of novel treatments for CNS injury.
Project description:After injury to the central nervous system (CNS), both neuron-intrinsic limitations on regenerative responses and inhibitory factors in the injured CNS environment restrict regenerative axon growth. Instances of successful axon regrowth offer opportunities to identify features that differentiate these situations from that of the normal adult CNS. One such opportunity is provided by the kinase inhibitor RO48, which dramatically enhances neurite outgrowth of neurons in vitro and substantially increased contralateral sprouting of corticospinal tract neurons when infused intraventricularly following unilateral pyramidotomy. The authors present here a transcriptomic deconvolution of RO48-associated axon growth, with the goal of identifying transcriptional regulators associated with axon growth in the CNS. Through the use of RNA sequencing (RNA-seq) and transcription factor binding site enrichment analysis, the authors identified a list of transcription factors putatively driving differential gene expression during RO48-induced neurite outgrowth of rat hippocampal neurons in vitro. The 82 transcription factor motifs identified in this way included some with known association to axon growth regulation, such as Jun, Klf4, Myc, Atf4, Stat3, and Nfatc2, and many with no known association to axon growth. A phenotypic loss-of-function screen was carried out to evaluate these transcription factors for their roles in neurite outgrowth; this screen identified several potential outgrowth regulators. Subsequent validation suggests that the Forkhead box (Fox) family transcription factor Foxp2 restricts neurite outgrowth, while FoxO subfamily members Foxo1 and Foxo3a promote neurite outgrowth. The authors’ combined transcriptomic-phenotypic screening strategy therefore allowed identification of novel transcriptional regulators of neurite outgrowth downstream of a multitarget kinase inhibitor.
Project description:Nogo-A localized on myelin adaxonal membrane in the adult CNS is well known for its role as neurite outgrowth inhibitor following a lesion. Nogo-A KO mice show enhanced regenerative/compensatory fiber growth following CNS lesion. However, changes undergoing in their intact CNS have not been studied. Moreover, Nogo-A in the intact adult CNS in also expressed in some neuronal subpopulations, e.g. in the hippocampus, olfactory bulbs and dorsal root ganglia. We compared the intact adult CNS (spinal cord) of Nogo-A KO mice in order to identify: potential compensating molecules which could be interesting new inhibitory neurite outgrowth candidates, possible molecules involved in the up to now not yet clarified downstream signalling pathway of Nogo-A, additional new functions for myelin or neuronal Nogo-A in the intact adult CNS. Keywords: gene expression, Nogo-A KO, spinal cord, adult, naive, unlesioned
Project description:To study the underlying mechanism of erinacines derived from Hericium erinaceus in neuroprotective effect against neurodegenerative diseases, we used the next-generation sequencing technology and bioinformatic analyses, erinacine S was found to cause the accumulation of neurosteroids in neurons. Additionally, we found that erinacine S enhances neurite outgrowth in a cell autonomous fashion of primary neurons. It also promotes post-injury axon regeneration of PNS neurons and enhances regeneration on inhibitory substrates of CNS neurons. This research uncovers a previously unknown effect of erinacine S on promoting neuronal regeneration via raising the level of neurosteroids.
Project description:The neurite outgrowth inhibitory myelin protein Nogo-A has been well studied in the context of central nervous system (CNS) injury and disease. We studied the effects of the application of neutralizing anti-Nogo-A antibodies (11C7 and 7B12) in intact CNS tissue in vitro using rat organotypic hippocampal slice cultures. This study had the purpose of elucidating the role of Nogo-A in the adult intact CNS and determining the consequences of its neutralization through antibody application. In vitro cultures treated with anti-Nogo-A antibody showed an elicited growth response. The results also gave indications that hippocampal circuitry might be altered due to the regulation at the synaptic and neurotransmission level.
Project description:Transcription profiling by array of human breast cancer MCF-7 cells treated with novel compound F05 which promotes neurite growth on inhibitory substrates
Project description:Nogo-A localized on myelin adaxonal membrane in the adult CNS is well known for its role as neurite outgrowth inhibitor following a lesion. Nogo-A KO mice show enhanced regenerative/compensatory fiber growth following CNS lesion. However, changes undergoing in their intact CNS have not been studied. Moreover, Nogo-A in the intact adult CNS in also expressed in some neuronal subpopulations, e.g. in the hippocampus, olfactory bulbs and dorsal root ganglia. We compared the intact adult CNS (spinal cord) of Nogo-A KO mice in order to identify: potential compensating molecules which could be interesting new inhibitory neurite outgrowth candidates, possible molecules involved in the up to now not yet clarified downstream signalling pathway of Nogo-A, additional new functions for myelin or neuronal Nogo-A in the intact adult CNS. Keywords: gene expression, Nogo-A KO, spinal cord, adult, naive, unlesioned Spinal cords from 3 adult C57Bl/6 wild type and Nogo-A KO mice have been explanted. Total RNA has been extracted and processed for hybridization on Mouse 430 2.0 Affymetrix GeneChips. Following scanning and first analysis with MAS 5.0, further analysis was performed by GeneSpring 7.2 (Silicon Genetics, Redwood City, CA). A present call filter (2 out of 3 present calls in at least one out of the different studied conditions) was applied. Normalization was run per chip as well as per gene to the median of the control replicates. Data were statistical restricted through a 1-way Anova (p=0.05). A final threshold of =1.2 folds of increase or decrease in the expression level of each single transcript was applied. Regulated transcripts have been assigned to functional categories according to GeneOntology as well as literature and database mining (Pubmed and Bioinformatics Harvester EMBL Heidelberg).
Project description:We screened nine genetically diverse inbred mouse strains for differences in axonal growth of adult dorsal root ganglion (DRG) neurons on CNS myelin. Naïve DRG neurite outgrowth on myelin was very limited, but preconditioning the neurons by a prior sciatic nerve crush increased axonal growth substantially across all strains, with by far the greatest change in neurons from CAST/Ei mice. Three independent in vivo CNS injury models revealed greater capacity for CNS axonal regeneration in CAST/Ei than C57BL/6 mice. Full-genome expression profiling of naïve and pre-conditioned DRGs across all strains revealed Activin-βA (Inhba) as the transcript whose expression most closely correlated with axonal growth on myelin. In vitro and in vivo gain- and loss-of-function experiments confirmed that Activin promotes axonal growth in the CNS. Substantial regeneration is possible, therefore, in the injured mammalian CNS when Activin signaling is intrinsically high, as in CAST/Ei or when extrinsically modulated in other strains. 9 strains, 4 replicates per strain, 2 conditions (naïve and axotomy) = 72 samples. 2 samples were excluded because technical outliers (AJ_AX5D_1 and AJ_NAIVE_4 excluded from the normalized data but included in the raw data)
Project description:We screened nine genetically diverse inbred mouse strains for differences in axonal growth of adult dorsal root ganglion (DRG) neurons on CNS myelin. Naïve DRG neurite outgrowth on myelin was very limited, but preconditioning the neurons by a prior sciatic nerve crush increased axonal growth substantially across all strains, with by far the greatest change in neurons from CAST/Ei mice. Three independent in vivo CNS injury models revealed greater capacity for CNS axonal regeneration in CAST/Ei than C57BL/6 mice. Full-genome expression profiling of naïve and pre-conditioned DRGs across all strains revealed Activin-βA (Inhba) as the transcript whose expression most closely correlated with axonal growth on myelin. In vitro and in vivo gain- and loss-of-function experiments confirmed that Activin promotes axonal growth in the CNS. Substantial regeneration is possible, therefore, in the injured mammalian CNS when Activin signaling is intrinsically high, as in CAST/Ei or when extrinsically modulated in other strains.