Project description:Background: Comparison of temporal gene expression profiles. The RNA-seq data comprises 3 age groups: 2, 15 and 30 months for mouse skin; 5, 24 and 42 months for zebrafish skin. Illumina 50bp single-stranded single-read RNA sequencing Jena Centre for Systems Biology of Ageing - JenAge (www.jenage.de)
Project description:Comparison of temporal small RNA gene expression from Mus musculus skin. The RNA-seq data comprise 5 groups at ages: 2, 9, 15, 24 and 30 months. Jena Centre for Systems Biology of Ageing - JenAge (www.jenage.de)
Project description:Background: Skin aging is associated with intrinsic processes that compromise structure of the extracellular matrix while promoting loss of functional and regenerative capacity. These processes are accompanied by a large-scale shift in gene expression, but underlying mechanisms are not understood and conservation of these mechanisms between humans and mice is uncertain. Results: We used genome-wide expression profiling to investigate the aging skin transcriptome. In humans, age-related shifts in gene expression were sex-specific. In females, aging increased expression of transcripts associated with T-cells, B-cells and dendritic cells, and decreased expression of genes in regions with elevated Zeb1, AP-2 and YY1 motif density. In males, however, these effects were contrasting or absent. When age-associated gene expression patterns in human skin were compared to those in tail skin from CB6F1 mice, overall human-mouse correspondence was weak. Moreover, inflammatory gene expression patterns were not induced with aging of mouse tail skin, and well-known aging biomarkers were in fact decreased (e.g., Clec7a, Lyz1 and Lyz2). These unexpected patterns and weak human-mouse correspondence may be due to decreased abundance of antigen presenting cells in mouse tail skin with age. Conclusions: Aging is generally associated with a pro-inflammatory state, but we have identified an exception to this pattern with aging of CB6F1 mouse tail skin. Aging therefore does not uniformly heighten inflammatory status across all mouse tissues. Furthermore, we identified both intercellular and intracellular mechanisms of transcriptome aging, including those that are sex- and species-specific. We used Affymetrix microarrays to evaluate genome-wide expression in tail skin from young (5 month) and old (30 month) CB6F1 mice (males and females). Genome-wide expression was evaluated in tail skin from young (5 months) and old (30 months) CB6F1 mice of both sexes. Samples were collected simultaneously but RNA samples were processed in two separate batches.
Project description:Expression data from whole lateral ventricle choroid plexus tissue of young (two months old) and aged (eighteen months old) CD1 male mice.
Project description:Comparison of gene expression profiles from Mus musculus brain at age 30 months. The RNA-seq data comprise 1 groups. Jena Centre for Systems Biology of Ageing - JenAge (www.jenage.de)
Project description:Comparison of gene expression profiles from Mus musculus skin of two age groups. The RNA-seq data comprise 2 groups at ages: 2 and 9 months. Jena Centre for Systems Biology of Ageing - JenAge (www.jenage.de)
Project description:Comparison of temporal small RNA gene expression from Mus musculus blood. The RNA-seq data comprise 5 groups at ages: 2, 9, 15, 24 and 30 months. Jena Centre for Systems Biology of Ageing - JenAge (www.jenage.de)
Project description:Comparison of gene expression profiles from Mus musculus blood of different age groups. The RNA-seq data comprise 5 groups at ages: 2, 9, 15, 24 and 30 months. Jena Centre for Systems Biology of Ageing - JenAge (www.jenage.de)