Project description:Transcriptional profiling of rainbow trout muscle cells comparing muscle cells from small fish with muscle cells from large fish at two time periods.
Project description:We identified that the adiponectin gene expression in rainbow trout muscle decreased by restrected feeding. In order to identify the genes differently expressed by the same treatment, micrarray analysis was conducted Fish were fed ad libitum once a week (RF, restricted feed group) or fed ad libitum twice per day (control). After 1 month, the muscle was desected from 4 individuals from each group.
Project description:Transcriptional profiling of rainbow trout liver and muscle cells comparing small fish with large fish within a population of neomale offspring.
Project description:Transcriptional profiling of rainbow trout muscle cells comparing muscle cells from small fish with muscle cells from large fish at two time periods. Two-condition experiment, small vs. large-fish muscle cells. Sept. and Dec. spawning fish. Biological replicates: 4 small replicates, 4 large replicates for each time period.
Project description:We identified that the adiponectin gene expression in rainbow trout muscle decreased by restrected feeding. In order to identify the genes differently expressed by the same treatment, micrarray analysis was conducted
Project description:Transcriptional profiling of rainbow trout liver and muscle cells comparing small fish with large fish within a population of neomale offspring. Small vs. large-fish liver and muscle cells from neomale offspring. Biological replicates: 4 small replicates, 4 large replicates.
Project description:Purpose:Our data significantly advance understanding of heat stress regulatory mechanism of miRNA in the head kidney of rainbow trout Methods:miRNAs of rainbow trout were involved in heat stress were identified by high-throughput sequencing of six small RNA libraries of the kidney tissues under control (18℃) and heat-treated (24℃) conditions Results:high-throughput sequencing was performed to identify miRNAs responsive to heat stress. We obtained 41,991,119 and 43,882,123 raw reads and 39,756,736 and 42,538,331 clean reads from under control (18℃) and heat-treated (24℃) .A total of 392 conserved miRNAs and 989 novel miRNAs were identified, of which 78 miRNAs were expressed in different response to heat stress. In addition to, including 393 negative correlation miRNA-target gene pairs Conclusions:through high-throughput sequencing of the six libraries from head kidney tissue of rainbow trout, the expression level of miRNA has significant changes after heat stress.
Project description:Transcriptional profiling of rainbow trout liver cells comparing liver cells from small fish with liver cells from large fish at two time periods.
Project description:The aim of this sequencing experiment was to make available tissue expression panels for selected fish species for comparative expression studies between the species. Tissue samples were collected for zebrafish (Danio rerio), medaka (Oryzias latipes), and rainbow trout (Oncorhynchus mykiss). Tissue types included liver, skin, muscle, heart, gut, gill, eye, brain for all three species, with additionally pyloric caeca, kidney, head kidney, and spleen for rainbow trout. Only liver samples were taken in replicate of four or three for rainbow trout. All fish were raised under standard rearing conditions for the species. Total RNA was extracted from the tissue samples and paired‐end sequencing of sample libraries was completed on an Illumina HiSeq 2500 with 125‐bp reads. Processed count tables per species as raw counts, FPKM, or TPM, were generated from read alignment to the Ensembl genomes of the respective species using STAR and gene level counting using RSEM and Ensembl gene annotation.
Project description:Rainbow trout is a typical cold-water fish, with the intensification of global warming, high temperatures severely restrict the development of aquaculture in summer. Understanding the molecular regulation mechanisms of rainbow trout in response to heat stress will be salutary to alleviate heat stress-related damage. In the present study, we performed transcriptome analysis of liver tissues in rainbow trout under heat stress (24℃) and control (18℃) conditions to identify induced lncRNAs and pathways by heat stress. More than 658 million clean reads and 5,916 lncRNAs were identified from six liver libraries. A total of 927 novel lncRNAs were generated and 428 differentially expressed lncRNAs were screened through stringent thresholds. The RNA-seq results were verified by RT-qPCR. In addition, the regulatory network of important functional lncRNA-mRNA were constructed. GO and KEGG enrichment analysis of target gene of differentially expressed lncRNAs were performed. Many target genes involved in maintaining homeostasis or adapting to stress and stimuli were highly induced under heat stress. Several important regulatory pathways were involved in heat stress, including thyroid hormone signaling pathway, PI3K-Akt signaling pathway, estrogen signaling pathway, etc. This result broadens our understanding of lncRNA associated with heat stress and provides new insights into lncRNA-mediated regulation of rainbow trout heat stress.