Project description:Intestinal epithelial cells (IECs) were isolated from the colon of Villin-CreERT2, Rnf20-flox and Rnf40-flox mice two weeks upon the Tamoxifen-induced, intestinal knockout of Rnf20 and Rnf40. RNA was isolated from snap-frozen IECs to perform mRNA-seq.
Project description:Three subsets of intestinal epithelial cells (IECs) (P9, Surface; P10, Large Crypt; P11, Small Crypt) were isolated from Naïve and Day 9 C.r.-infected Cntrl (Cre-) and CD4 cre+. Il22 floxed mice (CD4 cKO)
Project description:Intestinal epithelial cells (IECs) were isolated from the colon of Villin-CreERT2, Rnf20-flox and Rnf40-flox mice two weeks upon the Tamoxifen-induced, intestinal knockout of Rnf20 and Rnf40. ChIP-seq for H3K4me3 was performed using snap-frozen IECs.
Project description:To investigate the cause of defects in intestinal epithelial cells (IECs) homeostasis and acute death of IECs specific Mob1a/b double knockout mice, microarray analysis with isolated IECs was performed.
Project description:The role of Tfr1 in non-erythroid tissues remains elusive due to the embryonic lethality of the Tfr1 global knockout mouse model. To bypass this problem, we generated a mouse model in which Tfr1 was conditionally deleted in intestinal epithelial cells (IECs). These mice developed severe IEC disruption, characterized by blunted villi, edema, loss of proliferative intervillus IECs, accumulation of lipids, and early neonatal lethality. Strikingly, a wide range of genes associated with epithelial-to-mesenchymal transition were highly upregulated in IEC lacking Tfr1. Additionally, candidate vesicular transport and sorting genes implicated in lipid absorption and trafficking were downregulated. Surprisingly, the presence of a mutant allele of Tfr1, which is unable to bind to iron-loaded transferrin, was capable of rescuing the lethality, intestinal epithelial homeostasis, and proliferation in a majority of the Tfr1 conditional knockout mice. 9 samples (3 wildtype, 3 knockout, 3 rescue) were prepared from the intestinal epithelial cells isolated from the small intestine and proximal colon.