Project description:Prostate cancer is one of the most common malignancies and the second leading cause of death from cancer in men. The molecular mechanisms driving prostate carcinogenesis are complex; with several lines of evidence suggesting that the re-expression of conserved developmental programs play a key role. Through conditional gene targeting and organ grafting, we describe conserved roles for the transcription factor Sox9 in the initiation of both prostate organogenesis and prostate carcinogenesis in murine models. Abrogation of Sox9 expression prior to the initiation of androgen signaling blocks the initiation of prostate development. Similarly, Sox9 deletion in two genetic models of prostate cancer (TRAMP and Hi-Myc) blocks cancer initiation. Expression profiling of Sox9-null prostate epithelial cells reveals that the role of Sox9 in the initiation of prostate development may relate to its regulation of multiple cytokeratins and/or calcium-related proteins. Due to its essential role in cancer initiation, manipulation of Sox9 targets in at-risk men may prove useful in the chemoprevention of prostate cancer. Sox9 differential gene expression in prostaspheres derived from the urogenital sinus epithelium was assessed by tow-colors direct comparisons of labeled moieties. Hybridizations were performed on the Agilent (Santa Clara, CA) Whole Mouse Genome DNA microarray (mgug4122a). Sox9 targets were assessed in murine prostate epithelial cells with targeted deletion.
Project description:Dnmt1 is an important regulator of tissue development and differentiation. To assess the effects of epithelium Dnmt1 deletion in the developing urogenital sinus (precursor of the urethra and prostate in males), we isolated urogenital sinus epithelial tissue from Dnmt1 deleted mouse embryos and wildtype mouse embryos. The transcriptomes were analyzed by RNA-seq
Project description:Analysis of transcriptome of tissue recombinants (mouse seminal vesicle epithelial [SVE] cells or prostate epithelial [PE] cells, and rat urogenital sinus [UGS] mesenchymal cells) grown under the kidney capsule in athymic nude mice for 3 months.
Project description:Evaluation of gene expression changes corresponding to urogenital epithelial migration during early mouse prostatic development We used microarrays to investigate the global programme of gene expression in early mouse prostate tissue and identified necessary mediators of urogenital epithemial migration and relation to SOX9
Project description:Introgressed variants from other species can be an important source of genetic variation because they may arise rapidly, can include multiple mutations on a single haplotype, and have often been pretested by selection in the species of origin. Although introgressed alleles are generally deleterious, several studies have reported introgression as the source of adaptive alleles-including the rodenticide-resistant variant of Vkorc1 that introgressed from Mus spretus into European populations of Mus musculus domesticus. Here, we conducted bidirectional genome scans to characterize introgressed regions into one wild population of M. spretus from Spain and three wild populations of M. m. domesticus from France, Germany, and Iran. Despite the fact that these species show considerable intrinsic postzygotic reproductive isolation, introgression was observed in all individuals, including in the M. musculus reference genome (GRCm38). Mus spretus individuals had a greater proportion of introgression compared with M. m. domesticus, and within M. m. domesticus, the proportion of introgression decreased with geographic distance from the area of sympatry. Introgression was observed on all autosomes for both species, but not on the X-chromosome in M. m. domesticus, consistent with known X-linked hybrid sterility and inviability genes that have been mapped to the M. spretus X-chromosome. Tract lengths were generally short with a few outliers of up to 2.7 Mb. Interestingly, the longest introgressed tracts were in olfactory receptor regions, and introgressed tracts were significantly enriched for olfactory receptor genes in both species, suggesting that introgression may be a source of functional novelty even between species with high barriers to gene flow.
Project description:PURPOSE: To provide a detailed gene expression profile of the normal postnatal mouse cornea. METHODS: Serial analysis of gene expression (SAGE) was performed on postnatal day (PN)9 and adult mouse (6 week) total corneas. The expression of selected genes was analyzed by in situ hybridization. RESULTS: A total of 64,272 PN9 and 62,206 adult tags were sequenced. Mouse corneal transcriptomes are composed of at least 19,544 and 18,509 unique mRNAs, respectively. One third of the unique tags were expressed at both stages, whereas a third was identified exclusively in PN9 or adult corneas. Three hundred thirty-four PN9 and 339 adult tags were enriched more than fivefold over other published nonocular libraries. Abundant transcripts were associated with metabolic functions, redox activities, and barrier integrity. Three members of the Ly-6/uPAR family whose functions are unknown in the cornea constitute more than 1% of the total mRNA. Aquaporin 5, epithelial membrane protein and glutathione-S-transferase (GST) omega-1, and GST alpha-4 mRNAs were preferentially expressed in distinct corneal epithelial layers, providing new markers for stratification. More than 200 tags were differentially expressed, of which 25 mediate transcription. CONCLUSIONS: In addition to providing a detailed profile of expressed genes in the PN9 and mature mouse cornea, the present SAGE data demonstrate dynamic changes in gene expression after eye opening and provide new probes for exploring corneal epithelial cell stratification, development, and function and for exploring the intricate relationship between programmed and environmentally induced gene expression in the cornea. Keywords: other