Project description:Early reperfusion of ischemic cardiac tissue remains the most effective intervention for improving clinical outcome following myocardial infarction. However, abrupt increases in intracellular Ca2+ during myocardial reperfusion cause cardiomyocyte death and consequent loss of cardiac function, referred to as ischemia/reperfusion (IR) injury. Cardiac IR is accompanied by dynamic changes in expression of microRNAs (miRNAs), which inhibit specific mRNA targets. miR-214 is up-regulated during ischemic injury and heart failure in mice and humans, but its potential role in these processes is unknown. We show that genetic deletion of miR-214 in mice causes loss of cardiac contractility, increased apoptosis, and excessive fibrosis in response to IR injury. The microarray contains 6 samples, each containing cDNA pooled from 3 mice per group. There are no replicates. The array was designed to make 3 different pairwise comparisons between the following: P14 WT and miR-214 KO hearts; adult WT and miR-214 KO skeletal muscle; adult WT and miR-214 KO hearts
Project description:Purpose: Determine the differential gene expression pattern between wildtype, Pkd2-KO and Pkd2-miR-214 KO mice Methods: kidney mRNA profiles of Pkd2-KO and Pkd2-mir-214-KO mice was sequenced with N of 3 in each group Results: 972 differentially expressed transcripts were identified between Pkd2-KO kidneys and Pkd2-miR-214-KO kidneys Conclusion: Deletion of miR-214 promotes interstitial inflammation in mouse models of ADPKD
Project description:MicroRNA-1 (miR-1) is the most abundant miRNA in adult skeletal muscle. To determine the function of miR-1 in adult skeletal muscle, we generated an inducible, skeletal muscle-specific miR-1 knockout (KO) mouse. Integration of RNA-sequencing (RNA-seq) data from miR-1 KO muscle with Argonaute 2 enhanced crosslinking and immunoprecipitation sequencing (AGO2 eCLIP-seq) from human skeletal muscle identified miR-1 target genes involved with glycolysis and pyruvate metabolism. The loss of miR-1 in skeletal muscle induced cancer-like metabolic reprogramming, as shown by higher pyruvate kinase muscle isozyme M2 (PKM2) protein levels, which promoted glycolysis. Comprehensive bioenergetic and metabolic phenotyping combined with skeletal muscle proteomics and metabolomics further demonstrated that miR-1 KO induced metabolic inflexibility as a result of pyruvate oxidation resistance. While the genetic loss of miR-1 reduced endurance exercise performance in mice and in C. elegans, the physiological down-regulation of miR-1 expression in response to a hypertrophic stimulus in both humans and mice may cause a similar metabolic reprogramming that supports muscle cell growth. Taken together, these data identify a novel post-translational mechanism of adult skeletal muscle metabolism regulation mediated by miR-1.
Project description:We report transcriptomic changes in skeletal muscle of systemic miR-181a2b2 KO mice in response to chow and HFSC diet feeding and hindlimb ischemia
Project description:We conducted expression profiling of white adipose tissue isolated from WT and miR-22 KO animals. The main work is analysis of the miR-22 function in striated muscle. White adipose tissue (WAT) was analyzed to look at effects in WAT, as that might be induced by metabolic changes in skeletal muscle.
Project description:Cancer is considered as a disease of a specific organ, but its effects are felt throughout the body. The systemic effects of cancer can lead to weakness in muscles and heart, which hastens cancer-associated death. miR-486 is a myogenic microRNA and its reduced expression in skeletal muscle is observed in muscular dystrophy. Muscle-specific transgenic expression of miR-486 using muscle creatine kinase promoter (MCK-miR-486) partially rescues skeletal muscle defects in muscular dystrophy animal models. We had previously demonstrated reduced circulating and skeletal muscle levels of miR-486 in several cancer types and lower miR-486 levels correlated with skeletal muscle defects and functional limitations in mammary tumor models. Therefore, skeletal muscle defects induced by cancer could resemble defects observed in various dystrophies, which could be reversed through skeletal muscle expression of miR-486. We performed functional limitations studies and biochemical analysis of skeletal muscles of MMTV-Neu transgenic mice that mimic HER2+ breast cancer and MMTV-PyMT transgenic mice that mimic luminal subtype B breast cancer and these mice crossed to MCK-miR-486 transgenic mice. miR-486 significantly prevented tumor-induced reduction in muscle contraction force, grip strength, and rotarod performance in MMTV-Neu, but not in MMTV-PyMT mice. In MMTV-Neu model, miR-486 reversed several of the cancer-induced changes in skeletal muscle including loss of p53, phospho-AKT, and phospho-laminin alpha 2 (LAMA2) and gain of phosphorylation of the pre-mRNA processing factor hnRNPA0 and the splicing factor SRSF10. LAMA2 is a part of the dystrophin-associated glycoprotein complex, and its loss-of-function mutation is associated with congenital muscular dystrophy. Thus, similar to muscular dystrophy, miR-486 has the potential to reverse skeletal muscle defects and cancer burden in select cancer types.
Project description:We analyzed the functional role of DOR (Diabetes and Obesity Regulated gene) (also named Tp53inp2) in skeletal muscle. We show that DOR has a direct impact on skeletal muscle mass in vivo. Thus, using different transgenic mouse models, we demonstrate that while muscle-specific DOR gain-of-function results in reduced muscle mass, loss-of-function causes muscle hypertrophy. DOR has been described as a protein with two different functions, i.e., a nuclear coactivator and an autophagy regulator (Baumgartner et. al., PLoS One, 2007; Francis et. al., Curr Biol, 2010; Mauvezin et. al., EMBO Rep, 2010; Nowak et. al., Mol Biol Cell, 2009). This is why we decided to analyze which of these two functions could explain the phenotype observed in our mice models. In this regard, we performed a transcriptomic analysis using microarrays looking for genes differentially expressed in the quadriceps muscle of WT and SKM-Tg mice as well as in C and SKM-KO animals. Surprisingly, only a reduced number of genes were dysregulated upon DOR manipulation and most of the genes underwent mild changes in expression. These data strongly suggest that DOR does not operate as a nuclear co-factor in mouse skeletal muscle under the conditions subjected to study. In contrast, DOR enhances basal autophagy in skeletal muscle and promotes muscle wasting when autophagy is a contributor to muscle loss. To determine the functional role of DOR in skeletal muscle, we generated transgenic mice (SKM-Tg) overexpressing DOR specifically in skeletal muscle under the Myosin-Light Chain 1 promoter/enhancer. The open reading frame of DOR was introduced in an EcoRI site in the MDAF2 vector, which contains a 1.5 kb fragment of the MLC1 promoter and 0.9 kb fragment of the MLC1/3 gene containing a 3' muscle enhancer element (Rosenthal et. al., PNAS, 1989; Otaegui et. al., FASEB J, 2003). The fragment obtained after the digestion of this construct with BssHII was the one used to generate both transgenic mouse lines. Nontransgenic littermates were used as controls for the transgenic animals (Wt). In addition, a muscle-specific DOR knock-out mouse line (SKM-KO) was also generated by crossing homozygous DOR loxP/loxP mice with a mouse strain expressing Cre recombinase under the control of the Myosin-Light Chain 1 promoter (Bothe et. al., Genesis, 2000). Deletion of exons 3 and 4 driven by Cre recombinase caused the ablation of DOR expression. Non-expressing Cre DOR loxP/loxP littermates were used as controls for knockout animals (C). Four-month-old male mice were used in all experiments. Mice were in a C57BL/6J pure genetic background. We used microarrays to analyze the effect of DOR gain-of-function and DOR ablation on skeletal muscle gene expression Total RNA from quadriceps muscles from 4-month-old male mice was extracted and used for hibridization on Affimetrix microarrays
Project description:We analyzed the functional role of DOR (Diabetes and Obesity Regulated gene) (also named Tp53inp2) in skeletal muscle. We show that DOR has a direct impact on skeletal muscle mass in vivo. Thus, using different transgenic mouse models, we demonstrate that while muscle-specific DOR gain-of-function results in reduced muscle mass, loss-of-function causes muscle hypertrophy. DOR has been described as a protein with two different functions, i.e., a nuclear coactivator and an autophagy regulator (Baumgartner et. al., PLoS One, 2007; Francis et. al., Curr Biol, 2010; Mauvezin et. al., EMBO Rep, 2010; Nowak et. al., Mol Biol Cell, 2009). This is why we decided to analyze which of these two functions could explain the phenotype observed in our mice models. In this regard, we performed a transcriptomic analysis using microarrays looking for genes differentially expressed in the quadriceps muscle of WT and SKM-Tg mice as well as in C and SKM-KO animals. Surprisingly, only a reduced number of genes were dysregulated upon DOR manipulation and most of the genes underwent mild changes in expression. These data strongly suggest that DOR does not operate as a nuclear co-factor in mouse skeletal muscle under the conditions subjected to study. In contrast, DOR enhances basal autophagy in skeletal muscle and promotes muscle wasting when autophagy is a contributor to muscle loss. To determine the functional role of DOR in skeletal muscle, we generated transgenic mice (SKM-Tg) overexpressing DOR specifically in skeletal muscle under the Myosin-Light Chain 1 promoter/enhancer. The open reading frame of DOR was introduced in an EcoRI site in the MDAF2 vector, which contains a 1.5 kb fragment of the MLC1 promoter and 0.9 kb fragment of the MLC1/3 gene containing a 3' muscle enhancer element (Rosenthal et. al., PNAS, 1989; Otaegui et. al., FASEB J, 2003). The fragment obtained after the digestion of this construct with BssHII was the one used to generate both transgenic mouse lines. Nontransgenic littermates were used as controls for the transgenic animals (Wt). In addition, a muscle-specific DOR knock-out mouse line (SKM-KO) was also generated by crossing homozygous DOR loxP/loxP mice with a mouse strain expressing Cre recombinase under the control of the Myosin-Light Chain 1 promoter (Bothe et. al., Genesis, 2000). Deletion of exons 3 and 4 driven by Cre recombinase caused the ablation of DOR expression. Non-expressing Cre DOR loxP/loxP littermates were used as controls for knockout animals (C). Four-month-old male mice were used in all experiments. Mice were in a C57BL/6J pure genetic background.
Project description:Muscle atrophy F-box (MAFbx) is an E3 ubiquitin ligase which plays a critical role in mediating skeletal muscle atrophy. We investigated the effect of MAFbx KO in cardiac hypertrophy in response to pressure overload. A DNA microarray analysis was conducted using total RNA prepared from wild type and MAFbx KO mouse hearts subject to transverse aortic constriction (TAC). Results provide insight into the molecular mechanism to mediate the effect of MAFbx upon pathological hypertrophy. We applied TAC to wild type and MAFbx KO mice, and extracted total RNA one week after the surgery. The gene expression profiles were examined by Affymetrix Mouse Gene ST Array.
Project description:Muscle atrophy F-box (MAFbx) is an E3 ubiquitin ligase which plays a critical role in mediating skeletal muscle atrophy. We investigated the effect of MAFbx KO in cardiac hypertrophy in response to pressure overload. A DNA microarray analysis was conducted using total RNA prepared from wild type and MAFbx KO mouse hearts subject to transverse aortic constriction (TAC). Results provide insight into the molecular mechanism to mediate the effect of MAFbx upon pathological hypertrophy.