Project description:To investigate machanism of miR-210-3p regulating angiogenic ability of human umbilical vein endothelial cells (HUVECs) in hypoxic conditions, we transfected miR-210-3p mimic to overexpress miR-210-3p in human umbilical vein endothelial cells. We than performed RNA sequencing of miR-210-3p mimic-transfected and control HUVECs under hypoxic conditions to evaluate the transcriptional changes in the miR-210-3p-overexpressing HUVECs.
Project description:MicroRNAs (miRNAs) are small non-protein-coding RNAs that are incorporated into the RNA-induced silencing complex (RISC) and inhibit gene expression by regulating the stability and/or the translational efficiency of target mRNAs. miR-210 can be considered a master miRNA of hypoxic response and is currently regarded as a promising novel non-invasive tumor hypoxia marker. The targets identified to date indicate that miR-210 plays a role in cell cycle regulation, differentiation, mitochondrial metabolism repression, DNA repair and apoptosis. In order to identify miRNAs sub-sequentely modulated by miR-210, miRNA expression profiles of human umbilical vein endothelial cells (HUVEC) over-expressing miR-210 were generated, allowing the identification of miRNAs modulated upon miR-210 up-regulation. HUVEC over-expressing pre-miR-210 or a scramble sequence were generated by retroviral infection, yielding a selected population that expressed mature miR-210 levels comparable with those observed in hypoxic cells. miRNA expression profiles were then measured and miRNAs modulated upon miR-210 up-regulation were identified. This Sample represents four hybridizations - one of which was a dye-swap.
Project description:MicroRNAs (miRNAs) are small non-protein-coding RNAs that are incorporated into the RNA-induced silencing complex (RISC) and inhibit gene expression by regulating the stability and/or the translational efficiency of target mRNAs. miR-210 can be considered a master miRNA of hypoxic response and is currently regarded as a promising novel non-invasive tumor hypoxia marker. The targets identified to date indicate that miR-210 plays a role in cell cycle regulation, differentiation, mitochondrial metabolism repression, DNA repair and apoptosis. In order to identify miRNAs sub-sequentely modulated by miR-210, miRNA expression profiles of human umbilical vein endothelial cells (HUVEC) over-expressing miR-210 were generated, allowing the identification of miRNAs modulated upon miR-210 up-regulation.
Project description:Intra- and extracellular metabolomics dataset of human dermal blood endothelial cells (HDBECs), human umbilical vein endothelial cells (HUVECs), human dermal lymphatic endothelial cells (HDLECs) and intestinal lymphatic endothelial cells (iLECs) in proliferation and quiescence.
Project description:Human vein umbilical endothelial cells (HUVEC) were transfected with pre-miR control and pre-miR 146 (Ambion) in order to identify targets (direct and indirect) downregulated by miR-146a in endothelial cells. 164 transcripts were downregulated with a fold change ≥ 1.2.
Project description:To search for genes regulated by microRNA-100 in endothelial cells, we transfected human umbilical cord endothelial cells (HUVECs) with miR-100 precursor oligonucelotides. Human umbilical vein endothelial cells (HUVECs) were isolated from donated umbilical cords, pooled from two donors and cultivated up to passage 5. For transfection with pre-miR microRNA precursor molecules cells were cultured to 70% confluence and transfected with 8nM pre-miR-100 or an irrelevant control oligonucleotide (both from Ambion) using Lipofectamin RNAiMax (Invitrogen) according to the manufacturers instructions. Total RNA was isolated 48h after transfection.