Project description:Identification of the specific WalR (YycF) binding regions on the B. subtilis chromosome during exponential and phosphate starvation growth phases. The data serves to extend the WalRK regulon in Bacillus subtilis and its role in cell wall metabolism, as well as implying a role in several other cellular processes.
Project description:Identification of the specific WalR (YycF) binding regions on the B. subtilis chromosome during exponential and phosphate starvation growth phases. The data serves to extend the WalRK regulon in Bacillus subtilis and its role in cell wall metabolism, as well as implying a role in several other cellular processes. For each sample analyzed in this study three biological replicates were performed. Three different samples were taken from a strain expressing the WalR-SPA protein as well as from wild-type (168) without a tagged WalR. Samples were taken from exponentially growing cells in low phosphate medium (LPDM) as well as from phosphate-limited cells (T2). Each sample compares ChIP DNA vs. Total DNA from the same cells.
Project description:The gene expression of Bacillus subtilis 168 showed 3 major patterns including early expression, transition expression and late expression We monitored Bacillus subtilis gene expression by using microarray at differernt time points
Project description:To define the ECF sigma sigV - regulated genes during log growth phase in LB media under induction conditions for sigV The seven extracytoplasmic function (ECF) sigma (σ) factors of Bacillus subtilis are broadly implicated in resistance to antibiotics and other cell envelope stressors mediated, in part, by regulation of cell envelope synthesis and modification enzymes. We here define the regulon of σV as including at least 20 operons many of which are also regulated by σM, σX, or σW. The σV regulon is strongly and specifically induced by lysozyme and this induction is key to the intrinsic resistance of B. subtilis to lysozyme. Strains with null mutations in either sigV or in all seven ECF σ factor genes (Δ7ECF) have essentially equal increases in sensitivity to lysozyme. Induction of σV in the Δ7ECF background restores lysozyme resistance, whereas induction of σM, σX or σW does not. Lysozyme resistance results from the ability of σV to activate the transcription of two operons: the autoregulated sigV-rsiV-oatA-yrhK operon and dltABCDE. Genetic analyses reveal that oatA and dlt are largely redundant with respect to lysozyme sensitivity: single mutants are not affected in lysozyme sensitivity whereas a double oatA dltA mutant is as sensitive as a sigV null strain. Moreover, the triple sigV oatA dltA mutant is no more sensitive than the oatA dltA double mutant, indicating that there are no other σV-dependent genes necessary for lysozyme resistance. Thus, σV confers lysozyme resistance by activation of two cell wall modification pathways: O-acetylation of peptidoglycan catalyzed by OatA and D-alanylation of teichoic acids by DltABCDE.
Project description:To explore the effects of different stress conditions on Bacillus subtilis str.168, a selection of conditions were applied to the organism and RNA-seq data gathered. A matrix of gene counts was produced as a basis for further analysis into the transcription profiles of Bacillus subtilis str.168.
Project description:Transcriptional response of Bacillus subtilis to moenomycin in wild-type 168. Bacillus subtilis 168, WT (-MOE) vs. WT (+MOE). The experiment was conducted in triplicate using three independent total RNA preparations. Untreated samples were labeled with Alexa Fluor 555 and moenomycin treated samples were labeled with Alexa Fluor 647.
Project description:The gene expression of Bacillus subtilis 168 showed 3 major patterns including early expression, transition expression and late expression We monitored Bacillus subtilis gene expression by using microarray at differernt time points Bacillus subtilis 168 was choosed as model for gram-positive to study gene expression at different stages
Project description:Bacillus subtilis encodes seven extracytoplasmic function (ECF) sigma factors. Three (sigma M, sigma W and simga X) mediate responses to cell envelope active antibiotics. The functions of sigma Y, sigma Z, sigma V, and YlaC remain largely unknown, and strong inducers of these sigma factors and their regulons have yet to be defined. Here, we define transcriptomic and phenotypic differences under non-stress conditions between strains carrying deletions in all seven ECF sigma factor genes (Δ7ECF), a sigMWX triple mutant (∆MWX), and the parental 168 strain. Our results identify >80 genes as at least partially dependent on ECF sigma factors and, as expected, most of these are dependent on sigma M, sigma W or sigma X which are active at a significant basal level during growth. Several genes, including the eps operon encoding enzymes for exopolysaccharide (EPS) production, were decreased in expression in Δ7ECF but affected little if at all in ΔMWX. Consistent with this observation, Δ7ECF (but not ∆MWX) showed reduced biofilm formation. Extending previous observations, we also note that ∆MWX is sensitive to a variety of antibiotics and Δ7ECF is either as sensitive as, or slightly more sensitive than, the ΔMWX strain to these stressors. These findings emphasize the overlapping nature of the seven ECF s factor regulons in B. subtilis, confirm that three of these (sigma M, W or X) play the dominant role in conferring intrinsic resistance to antibiotics, and provide initial insights into the roles of the remaining ECF sigma factors.