Project description:To further understand the gene expression characteristics of Pseudomonas aeruginosa PAO1, we have applied whole genome microarray expression profiling as a discovery platform to specify the temperature dependent expression of PAO1 genome at soil and human body temperature. We selected 28°C as temperature representative of the soil niche and 37°C for human body. The results from the temperature dependent transcriptome analysis are consistent to our previous published data that the phzM, ptsP and lasI genes expression is upregulated at 37°C [11]. The comparison analysis of the M18 genome expressional profiles at 28°C and 37°C indicated a total of 596 genes expressed in a temperature dependent manner over two fold.
Project description:To further understand the gene expression characteristics of Pseudomonas aeruginosa PAO1, we have applied whole genome microarray expression profiling as a discovery platform to specify the temperature dependent expression of PAO1 genome at soil and human body temperature. We selected 28°C as temperature representative of the soil niche and 37°C for human body. The results from the temperature dependent transcriptome analysis are consistent to our previous published data that the phzM, ptsP and lasI genes expression is upregulated at 37°C [11]. The comparison analysis of the M18 genome expressional profiles at 28°C and 37°C indicated a total of 596 genes expressed in a temperature dependent manner over two fold. Cells were grown to OD600=5.0-6.0 (late exponential phase) in LB medium at 28℃ and 37℃, respectively. Three independent experiments were performed at each time.
Project description:To further understand the gene expression characteristics of originating biocontrol strain Pseudomonas aeruginosa M18, we have applied whole genome microarray expression profiling as a discovery platform to to specify the temperature dependent expression of M18 genome at rhizosphere and human body temperature. We selected 28°C as temperature representative of the rhizosphere niches and 37°C for human body. The results from the temperature dependent transcriptome analysis are consistent to our previous published data that the phzM, ptsP and lasI genes expression is upregulated at 37°C. The comparison analysis of the M18 genome expressional profiles at 28°C and 37°C indicated a total of 605 gene expressed in a temperature dependent manner over about two fold at 28°C compared that at 37°C, covering 10.6% genes in M18 whole genome.
Project description:To further understand the gene expression characteristics of originating biocontrol strain Pseudomonas aeruginosa M18, we have applied whole genome microarray expression profiling as a discovery platform to to specify the temperature dependent expression of M18 genome at rhizosphere and human body temperature. We selected 28°C as temperature representative of the rhizosphere niches and 37°C for human body. The results from the temperature dependent transcriptome analysis are consistent to our previous published data that the phzM, ptsP and lasI genes expression is upregulated at 37°C. The comparison analysis of the M18 genome expressional profiles at 28°C and 37°C indicated a total of 605 gene expressed in a temperature dependent manner over about two fold at 28°C compared that at 37°C, covering 10.6% genes in M18 whole genome. Cells were grown to OD600=5.0-6.0 (late exponential phase) in LB medium at 28℃ and 37℃, respectively. Three independent experiments were performed at each time.
Project description:Analysis of Pseudomonas aeruginosa PAO1 treated with 200 µM sphingomyelin. Results provide insight into the response to sphingomyelin in P. aeruginosa.
Project description:The ParS/ParR two component regulatory system plays important roles for multidrug resistance in Pseudomonas aeruginosa. In this study we report RNA-seq analyses of the transcriptomes of P. aeruginosa PAO1 wild type and par mutants growing in a minimal medium containing 2% casamino acids. This has allowed the quantification of PAO1 transcriptome, and further defines the regulon that is dependent on the ParS/ParR system for expression. Our RNA-seq analysis produced the first estimates of absolute transcript abundance for the 5570 coding genes in P. aeruginosa PAO1. Comparative transcriptomics of P. aeruginosa PAO1 and par mutants identified a total of 464 genes regulated by ParS and ParR. Results also showed that mutations in the parS/parR system abolished the expression of the mexEF-oprN operon by down-regulating the regulatory gene mexS. In addition to affecting drug resistance genes, transcripts of quorum sensing genes (rhlIR and pqsABCDE-phnAB), were significantly up-regulated in both parS and parR mutants. Consistent with these results, a significant portion of the ParS/ParR regulated genes belonged to the MexEF-OprN and quorum sensing regulons. Deletion of par genes also lead to overproduction of phenazines and increased swarming motility, consistent with the up-regulation of quorum sensing genes. Our results established a link among ParS/ParR, MexEF-OprN and quorum sensing in Pseudomonas aeruginosa. Based on these results, we propose a model to illustrate the relationship among these regulatory systems in P. aeruginosa. A total of 9 samples were analyzed in AB medium + 2% casamino acids, Pseudomonas aeruginosa PAO1 wild type strain (3 replicates); Pseudomonas aeruginosa parS mutant (3 replicates); Pseudomonas aeruginosa parR mutant (3 replicates).
Project description:In this experiment the transcriptional response of the opportunistic human pathogen Pseudomonas aeruginosa to sublethal concentrations of NaClO was investigated. To this aim, four independent cultures of P. aeruginosa PAO1 grown in minimal medium BM2 were treated with NaClO (2 ug/ml) for 1 h at 37 C followed by RNA extraction and microarray analysis. Untreated cultures served as controls.
Project description:Pseudomonas aeruginosa PAO1 contacted with and without poplar roots gene expression Poplar contacted with and without PAO1 gene expression. All samples cultured in 1 x hrp + 0.25 % sucrose Keywords: Contact with different species