Project description:Hepatitis C Virus (HCV) core protein plays a major role in HCV mediated liver pathologies. We have previously reported that HCV core variants isolated from tumoral (T) and non-tumoral (NT) livers were capable to alleviate Smad transcriptional activity and to shift TGF-β responses from tumor suppressor effects to tumor promotion. To comprehensively appreciate the consequences of core-mediated deregulation of Smad signaling on TGF-b target gene expression, Affimetrix microarrays were performed. Microarray analyses demonstrate that HCV core expression in hepatocytes modulates TGF-b target gene expression. Furthermore, most of the genes modulated in core expressing hepatocytes after TGF-b treatment were already regulated in these non treated cells suggesting that HCV core is capable to activate latent TGF-b. Transcriptome analysis was performed on primary hepatocytes from transgenic mice expressing either Core T or core NT or their control littermates treated or not with TGF-b.
Project description:Hepatitis C Virus (HCV) core protein plays a major role in HCV mediated liver pathologies. We have previously reported that HCV core variants isolated from tumoral (T) and non-tumoral (NT) livers were capable to alleviate Smad transcriptional activity and to shift TGF-β responses from tumor suppressor effects to tumor promotion. To comprehensively appreciate the consequences of core-mediated deregulation of Smad signaling on TGF-b target gene expression, Affimetrix microarrays were performed. Microarray analyses demonstrate that HCV core expression in hepatocytes modulates TGF-b target gene expression. Furthermore, most of the genes modulated in core expressing hepatocytes after TGF-b treatment were already regulated in these non treated cells suggesting that HCV core is capable to activate latent TGF-b.
Project description:Transcriptional profiling of HCV core transgenic mice liver comparing nontransgenic mice liver or HCV core transgenic mice liver with various core expression levels. Exp I: Double transgenic mice DTM with high core vs single transgenic mice STM (triplicate); ExpII: DTM with modest core vs STM (triplicate); ExpIII: DTM with modest core vs DTM with high core (triplicate).
Project description:Introgressed variants from other species can be an important source of genetic variation because they may arise rapidly, can include multiple mutations on a single haplotype, and have often been pretested by selection in the species of origin. Although introgressed alleles are generally deleterious, several studies have reported introgression as the source of adaptive alleles-including the rodenticide-resistant variant of Vkorc1 that introgressed from Mus spretus into European populations of Mus musculus domesticus. Here, we conducted bidirectional genome scans to characterize introgressed regions into one wild population of M. spretus from Spain and three wild populations of M. m. domesticus from France, Germany, and Iran. Despite the fact that these species show considerable intrinsic postzygotic reproductive isolation, introgression was observed in all individuals, including in the M. musculus reference genome (GRCm38). Mus spretus individuals had a greater proportion of introgression compared with M. m. domesticus, and within M. m. domesticus, the proportion of introgression decreased with geographic distance from the area of sympatry. Introgression was observed on all autosomes for both species, but not on the X-chromosome in M. m. domesticus, consistent with known X-linked hybrid sterility and inviability genes that have been mapped to the M. spretus X-chromosome. Tract lengths were generally short with a few outliers of up to 2.7 Mb. Interestingly, the longest introgressed tracts were in olfactory receptor regions, and introgressed tracts were significantly enriched for olfactory receptor genes in both species, suggesting that introgression may be a source of functional novelty even between species with high barriers to gene flow.
Project description:We collected whole genome testis expression data from hybrid zone mice. We integrated GWAS mapping of testis expression traits and low testis weight to gain insight into the genetic basis of hybrid male sterility.