Project description:The model is based on publication:
Mathematical analysis of gefitinib resistance of lung adenocarcinoma caused by MET amplification
Abstract:
Gefitinib, one of the tyrosine kinase inhibitors of epidermal growth factor receptor (EGFR), is effective for treating lung adenocarcinoma harboring EGFR mutation; but later, most cases acquire a resistance to gefitinib. One of the mechanisms conferring gefitinib resistance to lung adenocarcinoma is the amplification of the MET gene, which is observed in 5–22% of gefitinib-resistant tumors. A previous study suggested that MET amplification could cause gefitinib resistance by driving ErbB3-dependent activation of the PI3K pathway. In this study, we built a mathematical model of gefitinib resistance caused by MET amplification using lung adenocarcinoma HCC827-GR (gefitinib resistant) cells. The molecular reactions involved in gefitinib resistance consisted of dimerization and phosphorylation of three molecules, EGFR, ErbB3, and MET were described by a series of ordinary differential equations. To perform a computer simulation, we quantified each molecule on the cell surface using flow cytometry and estimated unknown parameters by dimensional analysis. Our simulation showed that the number of active ErbB3 molecules is around a hundred-fold smaller than that of active MET molecules. Limited contribution of ErbB3 in gefitinib resistance by MET amplification is also demonstrated using HCC827-GR cells in culture experiments. Our mathematical model provides a quantitative understanding of the molecular reactions underlying drug resistance.
Project description:The NKX2-1 transcription factor, a regulator of normal lung development, is the most significantly amplified gene in human lung adenocarcinoma. To better understand how genomic alterations of NKX2-1 drive tumorigenesis, we generated an expression signature associated with NKX2-1 amplification in human lung adenocarcinoma, and analyzed DNA binding sites of NKX2-1 by genome-wide chromatin immunoprecipitation from NKX2-1-amplified human lung adenocarcinoma cell lines. Combining these expression and cistromic analyses identified LMO3, itself encoding a transcription regulator, as a candidate direct transcriptional target of NKX2-1, in addition to consensus binding motifs including a nuclear hormone receptor signature and a Forkhead box motif in NKX2-1-bound sequences. RNA interference analysis of NKX2-1-amplified cells compared to non-amplified cells demonstrated that LMO3 mediates cell proliferation downstream of NKX2-1; cistromic analysis that NKX2-1 may cooperate with FOXA1. Our findings provide new insight into the transcriptional regulatory network of NKX2-1 and suggest that LMO3 is a transducer of lineage specific cell survival of NKX2-1-amplified lung adenocarcinomas. NKX2-1 ChIP-seq from three lung adenocarcinoma cell lines with amplification of NKX2-1
Project description:The NKX2-1 transcription factor, a regulator of normal lung development, is the most significantly amplified gene in human lung adenocarcinoma. To better understand how genomic alterations of NKX2-1 drive tumorigenesis, we generated an expression signature associated with NKX2-1 amplification in human lung adenocarcinoma, and analyzed DNA binding sites of NKX2-1 by genome-wide chromatin immunoprecipitation from NKX2-1-amplified human lung adenocarcinoma cell lines. Combining these expression and cistromic analyses identified LMO3, itself encoding a transcription regulator, as a candidate direct transcriptional target of NKX2-1, in addition to consensus binding motifs including a nuclear hormone receptor signature and a Forkhead box motif in NKX2-1-bound sequences. RNA interference analysis of NKX2-1-amplified cells compared to non-amplified cells demonstrated that LMO3 mediates cell proliferation downstream of NKX2-1; cistromic analysis that NKX2-1 may cooperate with FOXA1. Our findings provide new insight into the transcriptional regulatory network of NKX2-1 and suggest that LMO3 is a transducer of lineage specific cell survival of NKX2-1-amplified lung adenocarcinomas.
Project description:Genome wide DNA methylation profiling of normal and adenocarcinoma lung tissues. The Illumina Infinium 27k Human DNA methylation Beadchip v1.2 was used to obtain DNA methylation profiles across approximately 27,000 CpGs in lung adenocarcinoma samples.
Project description:Lung adenocarcinoma is a malignant tumor with high morbidity and mortality. ZBTB16 plays a double role in various tumors; however, the potential mechanism of ZBTB16 in the pathophysiology of lung adenocarcinoma has yet to be elucidated. We herein observed a decreased expression of ZBTB16 mRNA and protein in lung adenocarcinoma and a significantly increased DNA methylation level of ZBTB16 in patients with lung adenocarcinoma. Analysis of public databases and patients’ clinical data indicated a close association between ZBTB16 and patient survival. Ectopic expression of ZBTB16 in lung adenocarcinoma cells significantly inhibited cell proliferation, invasion, and migration. It also induced cell cycle arrest in the S phase. Meanwhile, mitotic catastrophe was induced, and DNA damage and apoptosis occurred. In line with these findings, the overexpression of ZBTB16 in xenograft mice resulted in the inhibition of tumor growth. Comprehensive analysis showed that WDHD1 was a potential target for ZBTB16. The overexpression of both isoforms of WDHD1 significantly reversed the ZBTB16-mediated inhibition of lung adenocarcinoma proliferation and cell cycle. These studies suggest that ZBTB16 impedes the progression of lung adenocarcinoma by interfering with WDHD1 transcription, making it a potential novel therapeutic target in the management of lung adenocarcinoma.