Project description:Toxoplasma gondii is a ubiquitous protozoan pathogen able to infect both mammalian and avian hosts. Surprisingly, just three strains appear to account for the majority of isolates from Europe and N. America. To test the hypothesis that strain divergence might be driven by differences between mammalian and avian response to infection, we examine in vitro strain-dependent host responses in a representative avian host, the chicken. Chicken embryonic fibroblasts were cultivated in vitro and infected with different strains of Toxoplasma gondii; host transcriptional responses were then analyzed at 24 hours post-infection.
Project description:Toxoplasma gondii is a ubiquitous protozoan pathogen able to infect both mammalian and avian hosts. Surprisingly, just three strains appear to account for the majority of isolates from Europe and N. America. To test the hypothesis that strain divergence might be driven by differences between mammalian and avian response to infection, we examine in vitro strain-dependent host responses in a representative avian host, the chicken. Chicken embryonic fibroblasts were cultivated in vitro and infected with different strains of Toxoplasma gondii (Type II = ME49, Type III = CEP); host transcriptional responses were then analyzed at 24 hours post-infection.
Project description:Toxoplasma gondii is a ubiquitous protozoan pathogen able to infect both mammalian and avian hosts. Surprisingly, just three strains appear to account for the majority of isolates from Europe and N. America. To test the hypothesis that strain divergence might be driven by differences between mammalian and avian response to infection, we examine in vitro strain-dependent host responses in a representative avian host, the chicken. To identify parasite drivers of strain-dependent host response, QTL mapping was used; analysis revealed a locus on Toxoplasma chromosome VIIb. To determine whether this was the parasite gene ROP16, array analysis was performed on chicken embryonic fibroblasts infected with Type I parasites and ROP16-KO parasites (of a Type I background). Chicken embryonic fibroblasts were cultivated in vitro and infected with either Type I (RH) parasites or Type I ROP16-KO parasites; ROP16-dependent host transcriptional responses were then analyzed at 5 hours post-infection.
Project description:Toxoplasma gondii is a ubiquitous protozoan pathogen able to infect both mammalian and avian hosts. Surprisingly, just three strains appear to account for the majority of isolates from Europe and N. America. To test the hypothesis that strain divergence might be driven by differences between mammalian and avian response to infection, we examine in vitro strain-dependent host responses in a representative avian host, the chicken. To identify parasite drivers of strain-dependent host response, QTL mapping was used; analysis revealed a locus on Toxoplasma chromosome VIIb. To determine whether this was the parasite gene ROP16, array analysis was performed on chicken embryonic fibroblasts infected with Type I parasites and ROP16-KO parasites (of a Type I background).
Project description:This SuperSeries is composed of the following subset Series: GSE25468: Expression data from Human foreskin fibroblasts (HFFs) infected with Toxoplasma gondii. GSE25469: Expression data from WT or p65-/- mouse embryonic fibroblasts (MEFs) infected with Toxoplasma gondii. Refer to individual Series
Project description:To identify accessible chromatin regions in the human host cells during Toxoplasma parasite infection (uninfected, RH-infected and Pru-infected human foreskin fibroblasts) and in the obligate intracellular parasite Toxoplasma gondii (Type 1 RH strain and Type 2 Pru strain), ATAC-seq was performed.
2022-09-30 | GSE209866 | GEO
Project description:Expression data from chicken embryonic fibroblasts infected with Toxoplasma gondii
Project description:Toxoplasma gondii is an obligate intracellular Apicomplexan parasite capable of invading and surviving within nucleated cells in most warm-blooded animals. This remarkable task is achieved through the delivery of effector proteins from the parasite into the parasitophorous vacuole and host cell cytosol that rewire host cellular pathways, facilitating parasite evasion of the immune system. Here, we have identified a novel export pathway in Toxoplasma that involves cleavage of effector proteins by the Golgi-resident aspartyl protease 5 (ASP5) prior to translocation into the host cell. We demonstrate that ASP5 cleaves a highly constrained amino acid motif that has some similarity to the PEXEL motif of Plasmodium parasites. We show that ASP5 can mature effectors at both the N- and C-terminal ends of proteins and is also required for the trafficking of proteins without this motif. Furthermore, we show that ASP5 controls establishment of the nanotubular network and is required for the efficient recruitment of host mitochondria to the parasitophorous vacuole membrane. Global assessment of host gene expression following infection reveals that ASP5-dependent pathways influence thousands of the transcriptional changes that Toxoplasma imparts on its host cell. This work characterizes the first identified machinery required for export of Toxoplasma effectors into the infected host cell. Three groups of human foreskin fibroblasts are compared. Each group has 3 replicates giving a total of 9 samples. The first group of samples are infected with wild type (GRA16HA) Toxoplasma gondii, the second group with Asp5 knock-out Toxoplasma gondii, and the final group remain uninfected. All fibroblasts are generated from one donor sample.