Project description:This SuperSeries is composed of the following subset Series: GSE28909: Genome wide analysis of acral melanoma (Illumina) GSE28910: Genome wide analysis of acral melanoma (Affymetrix) Refer to individual Series
Project description:We performed microRNA sequencing of primary human FFPE Acral Melanoma (AM), Cutaneous Melanoma (CM), Acral Nevi (AN), and Cutaneous Nevi (CN). We found that previously identified ratios of microRNAs, particularly miR-21-5p and miR-211-5p, were able to accurately classify benign and malignant melanocytic neoplasia, both in non-acral cutaneous melanomas and nevi (CM vs CN), as well as matched acral melanoma and nevi (AM vs AN). Receiver operating characteristic area under the curve (AUC) of Ensemble models trained using these microRNA ratios demonstrated AUCs of 0.88-0.90 across these melanoma subtypes, suggesting the potential utility of these ratios as a biomarker of malignancy in melanocytic neoplasia.
Project description:Genotyping of a matched normal, primary and metastatic acral melanoma DNA from blood and one matched Primary and one metastatic acral melanoma was genotyped on Affmetrix SNP6
Project description:Assessment of mutation on expression levels Transcriptomic profile of a matched primary and metastatic acral melanoma One Primary and one metastatic acral melanoma transcript expression were assayed (no matched normal)
Project description:Kynureninase is a member of a large family of catalytically diverse but structurally homologous pyridoxal 5'-phosphate (PLP) dependent enzymes known as the aspartate aminotransferase superfamily or alpha-family. The Homo sapiens and other eukaryotic constitutive kynureninases preferentially catalyze the hydrolytic cleavage of 3-hydroxy-l-kynurenine to produce 3-hydroxyanthranilate and l-alanine, while l-kynurenine is the substrate of many prokaryotic inducible kynureninases. The human enzyme was cloned with an N-terminal hexahistidine tag, expressed, and purified from a bacterial expression system using Ni metal ion affinity chromatography. Kinetic characterization of the recombinant enzyme reveals classic Michaelis-Menten behavior, with a Km of 28.3 +/- 1.9 microM and a specific activity of 1.75 micromol min-1 mg-1 for 3-hydroxy-dl-kynurenine. Crystals of recombinant kynureninase that diffracted to 2.0 A were obtained, and the atomic structure of the PLP-bound holoenzyme was determined by molecular replacement using the Pseudomonas fluorescens kynureninase structure (PDB entry 1qz9) as the phasing model. A structural superposition with the P. fluorescens kynureninase revealed that these two structures resemble the "open" and "closed" conformations of aspartate aminotransferase. The comparison illustrates the dynamic nature of these proteins' small domains and reveals a role for Arg-434 similar to its role in other AAT alpha-family members. Docking of 3-hydroxy-l-kynurenine into the human kynureninase active site suggests that Asn-333 and His-102 are involved in substrate binding and molecular discrimination between inducible and constitutive kynureninase substrates.