Project description:Whole genome microarrays were used to compare the transcriptional profile of Candida parapsilosis bcr1 knockout to wild type cells.
Project description:This SuperSeries is composed of the following subset Series: GSE33460: Transcriptional profile of Candida albicans bcr1 knockout. GSE33461: Transcriptional profile of Candida parapsilosis bcr1 knockout. GSE33462: Transcriptional profile of Candida parapsilosis CLIB214 culture in low iron conditions Refer to individual Series
Project description:Whole genome microarrays were used to compare the transcriptional profile of Candida parapsilosis bcr1 knockout to wild type cells. RNA was isolated from CLIB214 (wild type) or bcr1 delete (CDb71 or CDUHB6) grown in SD medium supplemented with 50 mM glucose and 10% fetal calf serum and labeled with Cy3 or Cy5. 7 independent biological replicates were compared. Two dye swaps were perfomed so that five of seven CLIB214 cultures were labeled with Cy3, and two were labeled with Cy5.
Project description:This SuperSeries is composed of the following subset Series: GSE32712: Transcriptional profile of Candida parapsilosis CLIB214 21% Oxygen (normoxia) versus at 1% oxygen (hypoxia). GSE32713: Transcriptional profile of Candida parapsilosis CLIB214 versus UPC2 delete, both at 1% oxygen (hypoxia) GSE32714: Transcriptional landscape of Candida parapsilosis Refer to individual Series
Project description:Abstract: Candida parapsilosis and Candida albicans are human fungal pathogens that belong to the CUG clade in the Saccharomycotina. In contrast to C. albicans, relatively little is known about the virulence properties of C. parapsilosis, a pathogen particularly associated with infections of premature neonates. We describe here the construction of >200 C. parapsilosis strains carrying double allele deletions of transcription factors, protein kinases and species-specific genes. Two independent deletions were constructed for each target gene. Growth in > 40 conditions was tested, including carbon source, temperature, and the presence of antifungal drugs. The phenotypes were compared to C. albicans strains with deletions of orthologous transcription factors. We found that many phenotypes are shared between the two species, such as the role of Upc2 as a regulator of azole resistance. Others are unique. For example, Cph2 plays a role in the hypoxic response in C. parapsilosis and not in C. albicans. We found extensive divergence between the biofilm regulators of the two species. We identified 7 transcription factors and one protein kinase that are required for biofilm development in C. parapsilosis. Only three (Efg1, Bcr1, and Ace2) have similar effects on C. albicans biofilms, whereas Cph2, Czf1, Gzf3 and Ume6 have major roles in C. parapsilosis only. In addition, two transcription factors (Brg1 and Tec1) with well-characterized roles in biofilm formation in C. albicans do not have the same function in C. parapsilosis. We also compared the transcription profile of C. parapsilosis and C. albicans biofilms. Our analysis suggests the processes shared between the two species are predominantly metabolic. C. parapsilosis mRNA profiles of wild type (WT) at 37 degree celcius in planktonic growth conditions and ace2-/-, cph2-/-, efg1-/-, czf1-/-, ume6-/-, bcr1-/- and WT in biofilm conditions were generated by deep sequencing, in triplicate, using Illumina HiSeq2000.
Project description:This SuperSeries is composed of the following subset Series: GSE13717: Transcriptional profile of Candida parapsilosis in SD media GSE13722: Transcriptional response of Candida parapsilosis in low oxygen (hypoxic) conditions in SD media Refer to individual Series
Project description:Abstract: Candida parapsilosis and Candida albicans are human fungal pathogens that belong to the CUG clade in the Saccharomycotina. In contrast to C. albicans, relatively little is known about the virulence properties of C. parapsilosis, a pathogen particularly associated with infections of premature neonates. We describe here the construction of >200 C. parapsilosis strains carrying double allele deletions of transcription factors, protein kinases and species-specific genes. Two independent deletions were constructed for each target gene. Growth in > 40 conditions was tested, including carbon source, temperature, and the presence of antifungal drugs. The phenotypes were compared to C. albicans strains with deletions of orthologous transcription factors. We found that many phenotypes are shared between the two species, such as the role of Upc2 as a regulator of azole resistance. Others are unique. For example, Cph2 plays a role in the hypoxic response in C. parapsilosis and not in C. albicans. We found extensive divergence between the biofilm regulators of the two species. We identified 7 transcription factors and one protein kinase that are required for biofilm development in C. parapsilosis. Only three (Efg1, Bcr1, and Ace2) have similar effects on C. albicans biofilms, whereas Cph2, Czf1, Gzf3 and Ume6 have major roles in C. parapsilosis only. In addition, two transcription factors (Brg1 and Tec1) with well-characterized roles in biofilm formation in C. albicans do not have the same function in C. parapsilosis. We also compared the transcription profile of C. parapsilosis and C. albicans biofilms. Our analysis suggests the processes shared between the two species are predominantly metabolic.