Project description:Many anti-cancer drugs induce DNA breaks to eliminate tumor cells. The anthracycline topoisomerase II inhibitors can also evict histones. We performed a genome-wide high-resolution mapping of chemotherapeutic effects of various topoisomerase I and II inhibitors. We show that different drugs target different types of chromatin for induction of DNA damage and histone eviction. Topoisomerase inhibitors topotecan and etoposide similarly target transcriptionally active chromatin for DNA damage. Daunorubicin induces DNA breaks and evicts histones in active chromatin, thus quenching local DNA damage response. The analog aclarubicin evicts histones in H3K27me3-marked heterochromatin. These results can guide rational treatment decisions regarding these genome manipulating anti-cancer drugs. FAIRE-seq and g-H2AX ChIP-seq were performed on K562 cells after drug exposure
Project description:Many anti-cancer drugs induce DNA breaks to eliminate tumor cells. The anthracycline topoisomerase II inhibitors can also evict histones. We performed a genome-wide high-resolution mapping of chemotherapeutic effects of various topoisomerase I and II inhibitors. We show that different drugs target different types of chromatin for induction of DNA damage and histone eviction. Topoisomerase inhibitors topotecan and etoposide similarly target transcriptionally active chromatin for DNA damage. Daunorubicin induces DNA breaks and evicts histones in active chromatin, thus quenching local DNA damage response. The analog aclarubicin evicts histones in H3K27me3-marked heterochromatin. These results can guide rational treatment decisions regarding these genome manipulating anti-cancer drugs.
Project description:Glucocorticoids (GCs) and topoisomerase II inhibitors are used in the treatment of acute lymphoblastic leukaemia (ALL) due to their ability to induce cell death in lymphoid cells. GC-induced apoptosis is mediated by the glucocorticoid receptor (GR), whereas topoisomerase II inhibitors cause DNA damage and activate sensors of DNA damage including the tumour suppressor p53. In order to shed light on the role of the microenvironment in cell death and identify determinants of drug sensitivity we performed transcriptomic analysis in ALL cells treated with the synthetic glucocorticoid dexamethasone, and the topoisomerase II inhibitor etoposide combined with bone marrow-derived conditioned media (CM).
Project description:One major class of anti-cancer drugs targets topoisomerase II to induce DNA double-strand breaks and cell death of fast growing cells. Here, we compare three members of this class - the antracyclines doxorubicin and aclarubicin, and a chemically unrelated compound, etoposide. Aclarubicin does not induce DNA breaks. We define a new activity for the antracyclines: unsupported histone eviction from ´open´ or loosely packed chromosomal areas reflecting exon and promoter regions. Comparison of histone H3K4me3 of cells post topoisomerase II inhibitors treatment to un-treated ones by ChIP-seq. Comparison of phosphorylated histone H2AX of cells post topoisomerase II inhibitors doxorubicin and etoposide treatment to un-treated ones by ChIP-seq.
Project description:Treatment with Aurora inhibitors has been shown to induce diverse biological responses in different tumor cell lines, in part depending on their p53 status. To characterize at the transcriptional level the effects of Danusertib we analyzed by microarray different tumor cell lines, with WT or mutant p53 status, that showed differential cell cycle response upon drug treatment.
Project description:Treatment with Aurora inhibitors has been shown to induce diverse biological responses in different tumor cell lines, in part depending on their p53 status. To characterize at the transcriptional level the effects of Danusertib we analyzed by microarray different tumor cell lines, with WT or mutant p53 status, that showed differential cell cycle response upon drug treatment. We analyzed the effects of Danusertib treatment in different tumor cell lines derived from ovary (A2780, p53WT), breast (MCF-7, p53WT and MDA-MB-468, p53 mut) and colon carcinoma (HCT116, p53 WT and Colo205, p53 mut). Cell line were treated (TRT) or left unreated (CTRL) for 24 hrs with 1 uM Danusertib.
Project description:Total and phosphoproteome analysis of effects of topoisomerase 1 (SN-38) and ATR (M1774) inhibitors in small cell lung cancer. Experiments performed in nuclear extract. See MetaData for more information.