Project description:Juvenile rainbow trout were fed Biodiet starter (4% body weight per day) with MeHg added at 0, 0.5, 5 and 50 ppm for six weeks. Atomic absorption spectrometry was applied to measure the level of MeHg in the whole fish body. Trout at six weeks were sampled from each group for gene expression analysis by cGRASP 16K cDNA microarrays. MeHg-exposed rainbow trout did not show overt signs of toxicity, nor were significant differences seen in mortality, length, mass, or condition factor. The chronic accumulation of total Hg in trout exhibited dose- and time-dependent patterns. The dysregulated genes have multiple functional annotations, such as involving metabolism, cellular development, ion binding and homeostasis, stress response, immune response, transcriptional regulation, hemolytic development, and apoptotic pathways. These results show that numerous molecular pathways involved in the growth and development of multiple organ systems are disrupted by exposure to moderate levels of dietary MeHg. The dysregulated genes will be selected by further analysis and used as biomarkers for MeHg exposure in aquatic environments.
Project description:Transcriptional profiling of rainbow trout liver cells comparing liver cells from small fish with liver cells from large fish at two time periods.
Project description:Transcriptional profiling of rainbow trout muscle cells comparing muscle cells from small fish with muscle cells from large fish at two time periods.
Project description:The sea-run phenotype of rainbow trout (Oncorhynchus mykiss), like other anadromous salmonids, present a juvenile stage fully adapted to life in freshwater known as parr. Development in freshwater is followed by the smolt stage, where preadaptations needed for seawater life are developed making fish ready to migrate to the ocean, after which event they become post-smolts. While these three life stages have been studied using a variety of approaches, proteomics has never been used for such purpose. The present study characterised the blood plasma proteome of parr, smolt and post-smolt rainbow trout using a gel electrophoresis liquid chromatography tandem mass spectrometry approach alone or in combination with low-abundant protein enrichment technology (combinatorial peptide ligand library). In total, 1,822 proteins were quantified, 17.95% of them being detected only in plasma post enrichment. Across all life stages, the most abundant proteins were ankyrin-2, DNA primase large subunit, actin, serum albumin, apolipoproteins, hemoglobin subunits, hemopexin-like proteins and complement C3. When comparing the different life stages, 17 proteins involved in mechanisms to cope with hyperosmotic stress and retinal changes, as well as the downregulation of nonessential processes in smolts, were significantly different between parr and smolt samples. On the other hand, 11 proteins related to increased growth in post-smolts, and also related to coping with hyperosmotic stress and to retinal changes, were significantly different between smolt and post-smolt samples. Overall, this study presents a series of proteins with the potential to complement current seawater-readiness assessment tests in rainbow trout, which can be measured non-lethally in an easily accessible biofluid. Furthermore, this study represents a first in-depth characterisation of the rainbow trout blood plasma proteome, having considered three life stages of the fish and used both fractionation alone or in combination with enrichment methods to increase protein detection.