ABSTRACT: Integration of BRCA1-mediated miRNA and mRNA signatures reveal miR-146a, miR-99b and miR-205 regulation of the TRAF2 and NFkB pathways (miRNA dataset)
Project description:This SuperSeries is composed of the following subset Series: GSE30763: Integration of BRCA1-mediated miRNA and mRNA signatures reveal miR-146a, miR-99b and miR-205 regulation of the TRAF2 and NFkB pathways (miRNA dataset) GSE30821: Integration of BRCA1-mediated miRNA and mRNA signatures reveal miR-146a, miR-99b and miR-205 regulation of the TRAF2 and NFkB pathways (mRNA dataset) Refer to individual Series
Project description:Microarray‐based techniques are being used to obtain miRNA and gene expression signatures associated with different samples. In order to deepen our understanding of BRCA1-associated tumorigenesis, we integrated data from microarray experiments to obtain significant miRNA-mRNA relationships associated with the presence of the BRCA1 gene. We obtained significant miRNA-gene-pathway relationships underlying the array signatures. Furthermore, we have demonstrated that miR-146a, miR-99b and miR-205, induced in HCC1937 BRCA1-expressing cells, commonly regulate the TRAF2 gene, a key regulator of NF-κB and MAPK pathways. In addition, re-expression of miR-146a, miR-99b or miR-205 in HCC1937 BRCA1-null cells was sufficient to modulate NF-κB activity. Thus, integration between miRNA-mRNA expression data allowed us to define genes and pathways controlled by miRNAs induced in the context of BRCA1 expression.
Project description:Microarray?based techniques are being used to obtain miRNA and gene expression signatures associated with different samples. In order to deepen our understanding of BRCA1-associated tumorigenesis, we integrated data from microarray experiments to obtain significant miRNA-mRNA relationships associated with the presence of the BRCA1 gene. We obtained significant miRNA-gene-pathway relationships underlying the array signatures. Furthermore, we have demonstrated that miR-146a, miR-99b and miR-205, induced in HCC1937 BRCA1-expressing cells, commonly regulate the TRAF2 gene, a key regulator of NF-?B and MAPK pathways. In addition, re-expression of miR-146a, miR-99b or miR-205 in HCC1937 BRCA1-null cells was sufficient to modulate NF-?B activity. Thus, integration between miRNA-mRNA expression data allowed us to define genes and pathways controlled by miRNAs induced in the context of BRCA1 expression. Comparison of miRNA expression profiles between two isogenic cell lines differing in BRCA1 gene expression status. Single-color experiments in a pairwise comparison design with three technical replicates per cell line.
Project description:Integration of BRCA1-mediated miRNA and mRNA signatures reveal miR-146a, miR-99b and miR-205 regulation of the TRAF2 and NFkB pathways (mRNA dataset)
| PRJNA154567 | ENA
Project description:Integration of BRCA1-mediated miRNA and mRNA signatures reveal miR-146a, miR-99b and miR-205 regulation of the TRAF2 and NFkB pathways
Project description:A long-prevailing model has held that the “seed” region (nucleotides 2-8) of a microRNA is typically sufficient to mediate target recognition and repression. However, numerous recent studies, both within the context of defining miRNA/target pairs by direct physical association and by directly assessing this model in vivo in C. elegans have brought this model into question. To test the importance of miRNA 3' pairing in vivo, in a mammalian system, we engineered a mutant murine mir-146a allele in which the 5' half of the mature microRNA retains the sequence of the wild-type mir-146a but the 3ʹ half has been altered to be anti-complementary to the wild-type miR-146a sequence. Mice homozygous or hemizygous for this mutant allele are phenotypically indistinguishable from wild-type controls and do not recapitulate any of the immunopathology previously described for mir-146a-null mice. Our results strongly support the conclusion that 3ʹ pairing is dispensable in the context of the function of a key mammalian microRNA.
Project description:Endothelial cells are critical for angiogenesis, and microRNAs plays important roles in this process. We investigated the regulatory role of microRNAs in endothelial cells of hepatocellular carcinoma (HCC) by examining the microRNA expression profile of human umbilical vein endothelial cells (HUVECs) in the absence or presence of human HCC cells, and identified miR-146a as the most highly up-regulated microRNA. Furthermore, we revealed that miR-146a promoted the expression of platelet-derived growth factor receptor (PDGFRA) in HUVECs, and this process was mediated by BRCA1. Overexpression of PDGFRA in the ECs of HCC tissues was associated with microvascular invasion, and predicted a poorer prognosis. These results suggest that MiR-146a plays a key role in regulating the angiogenic activity of ECs in HCC through miR-146a-BRCA1-PDGFRA pathway. MiR-146a may emerge as a potential anti-angiogenic target on ECs for HCC therapy. We have employed whole genome OneArray to examine the genome expression changes of HUVECs overexpressing miR-146a.
Project description:Endothelial cells are critical for angiogenesis, and microRNAs plays important roles in this process. We investigated the regulatory role of microRNAs in endothelial cells of hepatocellular carcinoma (HCC) by examining the microRNA expression profile of human umbilical vein endothelial cells (HUVECs) in the absence or presence of human HCC cells, and identified miR-146a as the most highly up-regulated microRNA. Furthermore, we revealed that miR-146a promoted the expression of platelet-derived growth factor receptor (PDGFRA) in HUVECs, and this process was mediated by BRCA1. Overexpression of PDGFRA in the ECs of HCC tissues was associated with microvascular invasion, and predicted a poorer prognosis. These results suggest that MiR-146a plays a key role in regulating the angiogenic activity of ECs in HCC through miR-146a-BRCA1-PDGFRA pathway. MiR-146a may emerge as a potential anti-angiogenic target on ECs for HCC therapy.
Project description:In this study we performed a systematic evaluation of functional miRNA-mRNA interactions associated with the aggressiveness of breast cancer cells using a combination of integrated miRNA and mRNA expression profiling, bioinformatics prediction, and functional assays. Analysis of the miRNA expression identified 11 miRNAs that were differentially expressed, including 7 down-regulated (miR-200c, miR-205, miR-203, miR-141, miR-34a, miR-183, and miR-375) and 4 up-regulated miRNAs (miR-146a, miR-138, miR-125b1 and miR-100), in aggressive cell lines when compared to normal and less aggressive cell lines. Transient overexpression of miR-200c, miR-205, and miR-375 in MDA-MB-231 cells led to the inhibition of cell migration and invasion. The integrated analysis of miRNA and mRNA expression identified 35 known and novel target genes of miR-200c, miR-205, and mir-375, including CFL2, LAMC1, TIMP2, ZEB1, CDH11, PRKCA, PTPRJ, PTPRM, LDHB, and SEC23A. Surprisingly, the majority of these genes (27 genes) were target genes of miR-200c, suggesting that it plays a more important role in regulating the aggressiveness of breast cancer cells. We characterized one of the target genes of miR-200c, CFL2, and demonstrated that CFL2 is overexpressed in aggressive breast cancer cell lines and can be significantly down-regulated by exogenous miR-200c. Tissue microarray analysis further revealed that CFL2 expression in primary breast cancer tissue correlated with tumor grade. To our knowledge, this study is the first systematic screening of functional miRNA target genes in aggressive breast cancer cells. The results obtained from this study may improve our understanding of the role of these candidate miRNAs and their target genes in relation to breast cancer aggressiveness and ultimately lead to the identification of novel biomarkers associated with prognosis.
Project description:In this study we performed a systematic evaluation of functional miRNA-mRNA interactions associated with the aggressiveness of breast cancer cells using a combination of integrated miRNA and mRNA expression profiling, bioinformatics prediction, and functional assays. Analysis of the miRNA expression identified 11 miRNAs that were differentially expressed, including 7 down-regulated (miR-200c, miR-205, miR-203, miR-141, miR-34a, miR-183, and miR-375) and 4 up-regulated miRNAs (miR-146a, miR-138, miR-125b1 and miR-100), in aggressive cell lines when compared to normal and less aggressive cell lines. Transient overexpression of miR-200c, miR-205, and miR-375 in MDA-MB-231 cells led to the inhibition of cell migration and invasion. The integrated analysis of miRNA and mRNA expression identified 35 known and novel target genes of miR-200c, miR-205, and mir-375, including CFL2, LAMC1, TIMP2, ZEB1, CDH11, PRKCA, PTPRJ, PTPRM, LDHB, and SEC23A. Surprisingly, the majority of these genes (27 genes) were target genes of miR-200c, suggesting that it plays a more important role in regulating the aggressiveness of breast cancer cells. We characterized one of the target genes of miR-200c, CFL2, and demonstrated that CFL2 is overexpressed in aggressive breast cancer cell lines and can be significantly down-regulated by exogenous miR-200c. Tissue microarray analysis further revealed that CFL2 expression in primary breast cancer tissue correlated with tumor grade. To our knowledge, this study is the first systematic screening of functional miRNA target genes in aggressive breast cancer cells. The results obtained from this study may improve our understanding of the role of these candidate miRNAs and their target genes in relation to breast cancer aggressiveness and ultimately lead to the identification of novel biomarkers associated with prognosis.