Project description:This SuperSeries is composed of the following subset Series: GSE32124: Effects of BRCA2 cis-regulation in normal breast and cancer risk amongst BRCA2 mutation carriers [expression data] GSE32258: Effects of BRCA2 cis-regulation in normal breast and cancer risk amongst BRCA2 mutation carriers [SNP data] Refer to individual Series
Project description:Introduction: Cis-acting regulatory single nucleotide polymorphisms (SNPs) at specific loci may modulate penetrance of germline mutations at the same loci by introducing different levels of expression of the wild-type allele. We have previously reported that BRCA2 shows differential allelic expression and we hypothesize that the known variable penetrance of BRCA2 mutations might be associated with this mechanism. Methods: We combined haplotype analysis and differential allelic expression of BRCA2 in breast tissue to identify expression haplotypes and candidate cis-regulatory variants. These candidate variants underwent selection based on in-silico predictions for regulatory potential and disruption of transcription factor binding, and were functionally analysed in-vitro and in-vivo in normal and breast cancer cell lines. SNPs tagging the expression haplotypes were correlated with the total expression of several genes in breast tissue measured by Taqman and microarray technologies. The effect of the expression haplotypes on breast cancer risk in BRCA2 mutation carriers was investigated in 2754 carriers. Results: We identified common haplotypes associated with differences in the levels of BRCA2 expression in human breast cells. We characterised three cis-regulatory SNPs located at the promoter and two intronic regulatory elements, which affect the binding of the transcription factors C/EBPα, HMGA1, DBP and ZF5. We showed that the expression haplotypes also correlated with changes in the expression of other genes in normal breast. Furthermore, there was suggestive evidence that the minor allele of SNP rs4942440, which is associated with higher BRCA2 expression, is also associated with a reduced risk of breast cancer (per-allele HR=0.85, 95%CI=0.72-1.00, P-trend=0.048). Conclusion: Our work provides further insights into the role of cis-regulatory variation in the penetrance of disease-causing mutations. We identified small-effect genetic variants associated with allelic expression differences in BRCA2, which could possibly affect the risk in mutation carriers through altering expression levels of the wild-type allele. Total gene expression of normal breast sample from healthy controls. This submission represents transcriptome component of study.
Project description:Introduction: Cis-acting regulatory single nucleotide polymorphisms (SNPs) at specific loci may modulate penetrance of germline mutations at the same loci by introducing different levels of expression of the wild-type allele. We have previously reported that BRCA2 shows differential allelic expression and we hypothesize that the known variable penetrance of BRCA2 mutations might be associated with this mechanism. Methods: We combined haplotype analysis and differential allelic expression of BRCA2 in breast tissue to identify expression haplotypes and candidate cis-regulatory variants. These candidate variants underwent selection based on in-silico predictions for regulatory potential and disruption of transcription factor binding, and were functionally analysed in-vitro and in-vivo in normal and breast cancer cell lines. SNPs tagging the expression haplotypes were correlated with the total expression of several genes in breast tissue measured by Taqman and microarray technologies. The effect of the expression haplotypes on breast cancer risk in BRCA2 mutation carriers was investigated in 2754 carriers. Results: We identified common haplotypes associated with differences in the levels of BRCA2 expression in human breast cells. We characterised three cis-regulatory SNPs located at the promoter and two intronic regulatory elements, which affect the binding of the transcription factors C/EBPα, HMGA1, DBP and ZF5. We showed that the expression haplotypes also correlated with changes in the expression of other genes in normal breast. Furthermore, there was suggestive evidence that the minor allele of SNP rs4942440, which is associated with higher BRCA2 expression, is also associated with a reduced risk of breast cancer (per-allele HR=0.85, 95%CI=0.72-1.00, P-trend=0.048). Conclusion: Our work provides further insights into the role of cis-regulatory variation in the penetrance of disease-causing mutations. We identified small-effect genetic variants associated with allelic expression differences in BRCA2, which could possibly affect the risk in mutation carriers through altering expression levels of the wild-type allele. Genotype of normal breast sample from healthy controls.
Project description:Introduction: Cis-acting regulatory single nucleotide polymorphisms (SNPs) at specific loci may modulate penetrance of germline mutations at the same loci by introducing different levels of expression of the wild-type allele. We have previously reported that BRCA2 shows differential allelic expression and we hypothesize that the known variable penetrance of BRCA2 mutations might be associated with this mechanism. Methods: We combined haplotype analysis and differential allelic expression of BRCA2 in breast tissue to identify expression haplotypes and candidate cis-regulatory variants. These candidate variants underwent selection based on in-silico predictions for regulatory potential and disruption of transcription factor binding, and were functionally analysed in-vitro and in-vivo in normal and breast cancer cell lines. SNPs tagging the expression haplotypes were correlated with the total expression of several genes in breast tissue measured by Taqman and microarray technologies. The effect of the expression haplotypes on breast cancer risk in BRCA2 mutation carriers was investigated in 2754 carriers. Results: We identified common haplotypes associated with differences in the levels of BRCA2 expression in human breast cells. We characterised three cis-regulatory SNPs located at the promoter and two intronic regulatory elements, which affect the binding of the transcription factors C/EBPα, HMGA1, DBP and ZF5. We showed that the expression haplotypes also correlated with changes in the expression of other genes in normal breast. Furthermore, there was suggestive evidence that the minor allele of SNP rs4942440, which is associated with higher BRCA2 expression, is also associated with a reduced risk of breast cancer (per-allele HR=0.85, 95%CI=0.72-1.00, P-trend=0.048). Conclusion: Our work provides further insights into the role of cis-regulatory variation in the penetrance of disease-causing mutations. We identified small-effect genetic variants associated with allelic expression differences in BRCA2, which could possibly affect the risk in mutation carriers through altering expression levels of the wild-type allele.
Project description:Introduction: Cis-acting regulatory single nucleotide polymorphisms (SNPs) at specific loci may modulate penetrance of germline mutations at the same loci by introducing different levels of expression of the wild-type allele. We have previously reported that BRCA2 shows differential allelic expression and we hypothesize that the known variable penetrance of BRCA2 mutations might be associated with this mechanism. Methods: We combined haplotype analysis and differential allelic expression of BRCA2 in breast tissue to identify expression haplotypes and candidate cis-regulatory variants. These candidate variants underwent selection based on in-silico predictions for regulatory potential and disruption of transcription factor binding, and were functionally analysed in-vitro and in-vivo in normal and breast cancer cell lines. SNPs tagging the expression haplotypes were correlated with the total expression of several genes in breast tissue measured by Taqman and microarray technologies. The effect of the expression haplotypes on breast cancer risk in BRCA2 mutation carriers was investigated in 2754 carriers. Results: We identified common haplotypes associated with differences in the levels of BRCA2 expression in human breast cells. We characterised three cis-regulatory SNPs located at the promoter and two intronic regulatory elements, which affect the binding of the transcription factors C/EBPα, HMGA1, DBP and ZF5. We showed that the expression haplotypes also correlated with changes in the expression of other genes in normal breast. Furthermore, there was suggestive evidence that the minor allele of SNP rs4942440, which is associated with higher BRCA2 expression, is also associated with a reduced risk of breast cancer (per-allele HR=0.85, 95%CI=0.72-1.00, P-trend=0.048). Conclusion: Our work provides further insights into the role of cis-regulatory variation in the penetrance of disease-causing mutations. We identified small-effect genetic variants associated with allelic expression differences in BRCA2, which could possibly affect the risk in mutation carriers through altering expression levels of the wild-type allele.
Project description:Approximately 5% of all breast cancers can be attributed to an inherited mutation in one of two cancer susceptibility genes, BRCA1 and BRCA2. We searched for genes that have the potential to distinguish healthy BRCA1 and BRCA2 mutation carriers from non-carriers based on differences in expression profiling. Using expression microarrays we compared gene expression of irradiated lymphocytes from BRCA1 and BRCA2 mutation carriers versus control non-carriers. We identified 137 probe sets in BRCA1 carriers and 1345 in BRCA2 carriers with differential gene expression. Gene Ontology analysis revealed that most of these genes relate to regulation pathways of DNA repair processes, cell cycle regulation and apoptosis. Real-time PCR was performed on the 36 genes which were most prominently differentially expressed in the microarray assay; 21 genes were shown to be significantly differentially expressed in BRCA1 or BRCA2 mutation carriers as compared to controls (p<0.05). Based on a validation study with 40 mutation carriers and 17 non-carriers, a multiplex model that included six or more coincidental genes of 18 selected genes was constructed in order to predict the risk of carrying a mutation. The results using this model showed sensitivity 95% and specificity 88%. In summary, our study provides insight into the biological effect of heterozygous mutations in BRCA1 and BRCA2 genes in response to ionizing irradiation induced DNA damage. We also suggest a set of 18 genes that can be used as a prediction and screening tool for BRCA1 or BRCA2 mutational carriers by using easily obtained lymphocytes. Using expression microarrays we compared gene expression of irradiated lymphocytes from BRCA1 and BRCA2 mutation carriers versus control non-carriers Fresh blood samples were obtained from 9 BRCA1 and 8 BRCA2 mutation carriers and 9 mutation-negative women. Lymphocytes were collected from fresh blood samples, and RNA was extracted one hour after γ-irradiation
Project description:Approximately 5% of all breast cancers can be attributed to an inherited mutation in one of two cancer susceptibility genes, BRCA1 and BRCA2. We searched for genes that have the potential to distinguish healthy BRCA1 and BRCA2 mutation carriers from non-carriers based on differences in expression profiling. Using expression microarrays we compared gene expression of irradiated lymphocytes from BRCA1 and BRCA2 mutation carriers versus control non-carriers. We identified 137 probe sets in BRCA1 carriers and 1345 in BRCA2 carriers with differential gene expression. Gene Ontology analysis revealed that most of these genes relate to regulation pathways of DNA repair processes, cell cycle regulation and apoptosis. Real-time PCR was performed on the 36 genes which were most prominently differentially expressed in the microarray assay; 21 genes were shown to be significantly differentially expressed in BRCA1 or BRCA2 mutation carriers as compared to controls (p<0.05). Based on a validation study with 40 mutation carriers and 17 non-carriers, a multiplex model that included six or more coincidental genes of 18 selected genes was constructed in order to predict the risk of carrying a mutation. The results using this model showed sensitivity 95% and specificity 88%. In summary, our study provides insight into the biological effect of heterozygous mutations in BRCA1 and BRCA2 genes in response to ionizing irradiation induced DNA damage. We also suggest a set of 18 genes that can be used as a prediction and screening tool for BRCA1 or BRCA2 mutational carriers by using easily obtained lymphocytes. Using expression microarrays we compared gene expression of irradiated lymphocytes from BRCA1 and BRCA2 mutation carriers versus control non-carriers