Project description:DNA double-strand breaks (DSBs) initiate meiotic recombination. Past DSB-mapping studies have used rad50S or sae2? mutants, which are defective in break processing, to accumulate DSBs, and report large (= 50 kb) “DSB-hot” regions that are separated by “DSB-cold” domains of similar size. Substantial recombination occurs in some DSB-cold regions, suggesting that DSB patterns are not normal in rad50S or sae2? mutants. We therefore developed novel methods that detect DSBs using ssDNA enrichment and microarray hybridization, and that use background-based normalization to allow cross-comparison between array datasets, to map genome-wide the DSBs that accumulate in processing-capable, repair-defective dmc1î and dmc1î rad51î mutants. DSBs were observed at known hotspots, but also in most previously-identified “DSB-cold” regions, including near centromeres and telomeres. While about 40% of the genome is DSB-cold in rad50S mutants, analysis of meiotic ssDNA from dmc1? shows that most of these regions have significant DSB activity. Thus, DSBs are distributed much more uniformly than was previously believed. Southern-blot assays of DSBs in selected regions in dmc1?, rad50S and wild-type cells confirm these findings. Comparisons of DSB signals in dmc1, dmc1 rad51, and dmc1 spo11 mutant strains identify Dmc1 as the primary strand transfer activity genome-wide, and Spo11-induced lesions as initiating all meiotic recombination. Keywords: DSB mapping, ChIP-chip, single strand DNA , BND cellulose
Project description:DNA double-strand breaks (DSBs) initiate meiotic recombination. Past DSB-mapping studies have used rad50S or sae2? mutants, which are defective in break processing, to accumulate DSBs, and report large (= 50 kb) “DSB-hot” regions that are separated by “DSB-cold” domains of similar size. Substantial recombination occurs in some DSB-cold regions, suggesting that DSB patterns are not normal in rad50S or sae2? mutants. We therefore developed novel methods that detect DSBs using ssDNA enrichment and microarray hybridization, and that use background-based normalization to allow cross-comparison between array datasets, to map genome-wide the DSBs that accumulate in processing-capable, repair-defective dmc1î and dmc1î rad51î mutants. DSBs were observed at known hotspots, but also in most previously-identified “DSB-cold” regions, including near centromeres and telomeres. While about 40% of the genome is DSB-cold in rad50S mutants, analysis of meiotic ssDNA from dmc1? shows that most of these regions have significant DSB activity. Thus, DSBs are distributed much more uniformly than was previously believed. Southern-blot assays of DSBs in selected regions in dmc1?, rad50S and wild-type cells confirm these findings. Comparisons of DSB signals in dmc1, dmc1 rad51, and dmc1 spo11 mutant strains identify Dmc1 as the primary strand transfer activity genome-wide, and Spo11-induced lesions as initiating all meiotic recombination. Keywords: DSB mapping, ChIP-chip, single strand DNA , BND cellulose We use two different strategies to map the genome-wide distribution of meiotic DSBs in the yeast Saccharomyces cerevisiae. The first is a chromatin immunoprecipitation (ChIP) based approach that targets the Spo11p protein, which remains covalently attached to DSB ends in the rad50S mutant background. The second approach involves BND cellulose enrichment of the single strand DNA (ssDNA) recombination intermediate formed by end-resection at DSB sites following Spo11p removal. We use dmc1 and dmc1 rad51 mutants that accumulates meiotic single strand DNA intermediates
Project description:ssDNA enrichment was used to map and compare DSB hotspots in dmc1, pch2 dmc1, sir2 dmc1, orc1-161 dmc1, dmc1 rdnadelete and dmc1 chr2:12 translocation strains.
Project description:ssDNA enrichment was used to map and compare DSB hotspots in dmc1, pch2 dmc1, sir2 dmc1, orc1-161 dmc1, dmc1 rdnadelete and dmc1 chr2:12 translocation strains. 6 samples, 2 replicates each. Averaged data is available as a supplementary file on the Series record (below).
Project description:Meiotic recombination is initiated by programmed DNA double-strand breaks (DSBs) and proceeds via binding of RPA, RAD51 and DMC1 to single-stranded DNA (ssDNA) substrates created after the formation of DSBs. Here, we report high-resolution in vivo maps of RPA and RAD51 binding in meiosis, mapping their binding locations and lifespans in a B6 and a genetically modified B6xCAST F1 mouse. We ascribe signals separately to the individual homologous chromosomes in the hybrid mouse, thereby separating the signal of binding to the chromosome where DSBs occurred and the chromosome that was used as template for repair. Together with super-resolution microscopy and DMC1 binding maps, we show that DMC1 and RAD51 have distinct spatial localization on ssDNA: whereas DMC1 binds near the break-site, RAD51 binds away from it. We characterize the D-loop, a critical intermediate bound by RPA, in vivo. These data show that DMC1, not RAD51, performs strand exchange in mammalian meiosis. We find that the localisation of D-loop intermediates is similar in crossover and non-crossover pathways, with a longer lifespan for crossover-destined intermediates. These findings answer long-standing questions about the molecular intermediates of recombination.
Project description:DNA double strand breaks (DSBs) in repetitive sequences are a potent source of genomic instability, due to the possibility of non-allelic homologous recombination (NAHR). Repetitive sequences are especially at risk during meiosis, when numerous programmed DSBs are introduced into the genome to initiate meiotic recombination 1. Within the budding yeast repetitive ribosomal (r)DNA array, meiotic DSB formation is prevented in part through Sir2-dependent heterochromatin 2,3. Here, we demonstrate that the edges of the rDNA array are exceptionally susceptible to meiotic DSBs, revealing an inherent heterogeneity within the rDNA array. We find that this localised DSB susceptibility necessitates a border-specific protection system consisting of the meiotic ATPase Pch2 and the origin recognition complex subunit Orc1. Upon disruption of these factors, DSB formation and recombination specifically increased in the outermost rDNA repeats, leading to NAHR and rDNA instability. Strikingly, the Sir2-dependent heterochromatin of the rDNA itself was responsible for the induction of DSBs at the rDNA borders in pch2? cells. Thus, while Sir2 activity globally prevents meiotic DSBs within the rDNA, it creates a highly permissive environment for DSB formation at the heterochromatin/euchromatin junctions. Heterochromatinised repetitive DNA arrays are abundantly present in most eukaryotic genomes. Our data define the borders of such chromatin domains as distinct high-risk regions for meiotic NAHR, whose protection may be a universal requirement to prevent meiotic genome rearrangements associated with genomic diseases and birth defects. This SuperSeries is composed of the following subset Series: GSE30071: ssDNA mapping in dmc1 strains GSE30072: ChIP-chip of DSB factors in wild type and pch2 strains Two types of study were undertaken to understand the regulation of meiotic DSB formation close to repetitive DNA elements in yeast. First, DSBs were mapped using ssDNA enrichment in strains isogenic for a dmc1 mutation, and also including pch2 delete, orc1-161, rdna delete and a reciprocal translocation between chromosomes 2 and 12 (trans2to12). Second, the association of the DSB factors Hop1, Rec114, Mer2, and Mre1, as well as total histone H3 and H3K4-trimethylation were measured by ChIP-chip analysis in wild-type and pch2 delete strains.
Project description:Single-stranded DNA (ssDNA) widely exists as intermediates in DNA metabolic pathways. The ssDNA binding protein, RPA, not only protects the integrity of ssDNA, but also directs the downstream factor that signals or repairs the ssDNA intermediate. However, it remains unclear how these enzymes/factors out-compete RPA and access to ssDNA. Using the budding yeast, Saccharomyces cerevisiae, as a model system, we discovered that Dna2, a key nuclease in DNA replication and repair, employs a bimodal interface to act with RPA both in cis and in trans. The cis-action renders RPA a processive unit for Dna2-catalyzed ssDNA digestion, where RPA actively delivers its bound ssDNA to Dna2. The trans-action mediated by an acidic patch from Dna2, on the other hand, enables Dna2 to operatie with a sub-optimal amount of RPA or to overcome DNA secondary structures. Genetically, this trans-action mode is not required for cell viability, but indispensable for successful DSB repair.
Project description:The formation of RAD51/DMC1 filaments on single-stranded (ss)DNAs, which is essential for homology search and strand exchange in DNA double-strand break (DSB) repair and for the protection of stalled DNA replication forks, is tightly regulated in time and space. FIGNL1 AAA+++ ATPase plays positive and negative roles in the RAD51-mediated recombination in human cells. However, the role of FIGNL1 in gametogenesis remains unsolved. Here, we characterized a germ-line-specific conditional knockout (cKO) mouse of FIGNL1. The Fignl1 cKO male mice showed defective chromosome synapsis and impaired meiotic DSB repair with the accumulation of RAD51/DMC1 on chromosomes in mid-meiotic prophase I, supporting a role of FIGNL1 in a post-assembly stage of RAD51/DMC1 filaments. Fignl1 cKO spermatocytes accumulate RAD51 and DMC1 ensembles on chromosomes not only in early meiotic prophase I but also in meiotic S-phase. These RAD51/DMC1 assemblies are independent of meiotic DSB formation. Finally, we showed that purified FIGNL1 dismantles RAD51 filament on double-stranded (ds)DNA as well as ssDNA. These results suggest a critical role of FIGNL1 to limit the uncontrolled assembly of RAD51 and DMC1 on native dsDNAs during the meiotic S-phase and meiotic prophase I.