Project description:Recently, 2-aminoxy-3-phenylpropionic acid (L-AOPP) had been demonstrated to possess an inhibitory activity against IAA biosynthesis but the molecular basis of the action was unclear. To investigate the function of L-AOPP, we conducted microarray analysis using the shoot apical meristem (SAM) part of A. thaliana in addition to whole plants after the treatment of L-AOPP. We performed microarray analysis using the shoot apical meristem (SAM) part of A. thaliana (Columbia-0) to investigate function of 2-aminoxy-3-phenylpropionic acid (L-AOPP) in relation to inhibition of auxin biosynthesis. Total RNA was extracted from SAM part of 7-day-old seedlings grown on 1/2 MS medium containing L-AOPP (50 µM),L-AOPP (50 µM) + Indole-3-acetic acid (IAA 10 nM) or Dimethyl sulfoxide (DMSO 0.1%).
Project description:Recently, 2-aminoxy-3-phenylpropionic acid (L-AOPP) had been demonstrated to possess an inhibitory activity against IAA biosynthesis but the molecular basis of the action was unclear. To investigate the function of L-AOPP, we conducted microarray analysis using the shoot apical meristem (SAM) part of A. thaliana in addition to whole plants after the treatment of L-AOPP.
Project description:Reversible protein phosphorylation is a post-translational modification involved in virtually all plant processes, as it mediates protein activity and signal transduction. Here, we probe dynamic protein phosphorylation during de novo shoot organogenesis in Arabidopsis thaliana. We find that application of three kinase inhibitors in various time intervals has different effects on root explants. We furthermore show that short exposures to the putative His kinase inhibitor TCSA during the initial days on shoot induction medium (SIM) are detrimental for regeneration in seven natural accessions. Investigation of ahk and ahp mutants, as well as reporter lines for shoot markers and hormone responses suggests that TCSA at least partially works by impeding cytokinin signal transduction via AHK3, AHK4, AHP2, AHP3, and AHP5. A mass spectrometry-based phosphoproteome analysis further reveals profound deregulation of Ser/Thr/Tyr phosphoproteins related to protein modification, transcriptional regulation, vesicle trafficking, organ morphogenesis, and cation transport. Among TCSA-responsive factors are prior candidates with a role in shoot apical meristem patterning, such as AGO1, BAM1, PLL5, FIP37, TOP1ALPHA, and RBR1, but also proteins involved in polar auxin transport (e.g., PIN1) and brassinosteroid signalling (e.g., BIN2). Potentially novel regeneration determinants regulated by TCSA include RD2, AT1G52780, PVA11, and AVT1C, while NAIP2, OPS, ARR1, QKY, and aquaporins exhibit differential phospholevels on control SIM.
Project description:Plants generally possess a strong ability to regenerate organs; for example, in tissue culture, shoots can regenerate from callus, a clump of actively proliferating, undifferentiated cells. Processing of pre-mRNA and ribosomal RNAs is important for callus formation and shoot regeneration. However, our knowledge of the roles of RNA quality control via the nonsense-mediated mRNA decay (NMD) pathway in shoot regeneration is limited. Here, we examined the shoot regeneration phenotypes of the low-beta-amylase1 (lba1)/upstream frame shift1-1 (upf1-1) and upf3-1 mutants, in which the core NMD components UPF1 and UPF3 are defective. These mutants formed callus from hypocotyl explants normally, but this callus behaved abnormally during shoot regeneration: the mutant callus generated numerous adventitious root structures instead of adventitious shoots in an auxin-dependent manner. Quantitative RT-PCR and microarray analyses showed that the upf mutations had widespread effects during culture on shoot-induction medium. In particular, the expression patterns of early auxin response genes, including those encoding AUXIN/INDOLE ACETIC ACID (AUX/IAA) family members, were significantly affected in the upf mutants. Also, the upregulation of shoot apical meristem-related transcription factor genes, such as CUP-SHAPED COTYLEDON1 (CUC1) and CUC2, was inhibited in the mutants. Taken together, these results indicate that NMD-mediated transcriptomic regulation modulates the auxin response in plants and thus plays crucial roles in the early stages of shoot regeneration.
Project description:De novo shoot organogenesis (DNSO) is a commonly used pathway for plant biotechnology, and is a hormonally regulated process, where auxin and cytokinin coordinates suites of genes encoding transcription factors, general transcription factors, and RNA metabolism machinery genes. Here we report that silencing Arabidopsis thaliana CTD phosphatase-like 4 (CPL4RNAi), which increases phosphorylation level of RNA polymerase II (pol II) CTD, altered lateral root development and DNSO efficiency of the host plants, suggesting an importance of precise control of pol II activities during DNSO. Under standard condition, roots of CPL4RNAi lines produced no or few lateral roots. When induced by high concentration of auxin, CPL4RNAi lines failed to produce focused auxin maxima at the meristem of lateral root primordia, and produced fasciated lateral roots. By contrast, root explants of CPL4RNAi lines were highly competent for DNSO. Efficient DNSO of CPL4RNAi lines were observed even under 10 times less cytokinin required for wild type explants. Transcriptome analysis showed CPL4RNAi but not wild type explants expressed high levels of shoot meristem related genes during priming by high auxin/cytokinin ratio, and subsequent shoot induction with cytokinin. These results indicate that CPL4 functions as a repressor of the early stage of DNSO, during acquisition of competency by high auxin/cytokinin ratio, perhaps via regulation of pol II activities.
Project description:gnp07_regeneome_transdifferenciation - microdissection - Study of the moleculars mecanism during transdifferenciation of Root ApicalMeristem to Shoot Apical Meristem - middle of growth permits to induce transdifferenciation of root apical meristem to shoot apical meristem