Project description:Humans vary markedly in their propensity to develop asthma, despite often being exposed to similar environmental stimuli. Similarly, mouse strains vary in susceptibility to airways pathology in experimental asthma. Sensitization and aerosol challenge with ovalbumin (OVA) induces eosinophil accumulation, mucus production and airways obstruction in BALB/c and C57BL/6 mice. In contrast, CBA/Ca mice show relatively little pathology. Allergen-induced production of IL-4, IL-5, IL-10 and IFN-g was detected in all three strains, with BALB/c mice generating the highest levels of IL-4, IL-5 and IL-10. Microarray analysis was used to identify genes differentially regulated in lung tissue after OVA challenge. Differentially regulated genes in the lungs of the asthma-susceptible C57BL/6 and BALB/c strains numbered 242 and 145, respectively, whereas only 42 genes were differentially expressed in the resistant CBA/Ca strain. In C57BL/6 mice, transcripts were enriched for adhesion molecules and this was associated with high levels of eosinophil recruitment. Differentially regulated genes in the lungs of only the asthma-susceptible strains numbered 64 and several of these have not previously been associated with asthma. Many of the genes differentially regulated in the susceptible strains were enzymes involved in inflammation. Using network analysis, mRNA for the anti-apoptotic protein survivin was found to be up-regulated in the lungs following allergen challenge. Survivin mRNA and protein were also expressed at high levels in eosinophils recovered by bronchoalveolar lavage from BALB/c and C57BL/6 mice. We propose that rapid apoptosis of lung eosinophils due to low expression of survivin contributes to the limitation of pathology in CBA/Ca mice Humans vary markedly in their propensity to develop asthma, despite often being exposed to similar environmental stimuli. Similarly, mouse strains vary in susceptibility to airways pathology in experimental asthma. Sensitization and aerosol challenge with ovalbumin (OVA) induces eosinophil accumulation, mucus production and airways obstruction in BALB/c and C57BL/6 mice. In contrast, CBA/Ca mice show relatively little pathology. Allergen-induced production of IL-4, IL-5, IL-10 and IFN-g was detected in all three strains, with BALB/c mice generating the highest levels of IL-4, IL-5 and IL-10. Microarray analysis was used to identify genes differentially regulated in lung tissue after OVA challenge. Differentially regulated genes in the lungs of the asthma-susceptible C57BL/6 and BALB/c strains numbered 242 and 145, respectively, whereas only 42 genes were differentially expressed in the resistant CBA/Ca strain. In C57BL/6 mice, transcripts were enriched for adhesion molecules and this was associated with high levels of eosinophil recruitment. Differentially regulated genes in the lungs of only the asthma-susceptible strains numbered 64 and several of these have not previously been associated with asthma. Many of the genes differentially regulated in the susceptible strains were enzymes involved in inflammation. Using network analysis, mRNA for the anti-apoptotic protein survivin was found to be up-regulated in the lungs following allergen challenge. Survivin mRNA and protein were also expressed at high levels in eosinophils recovered by bronchoalveolar lavage from BALB/c and C57BL/6 mice. We propose that rapid apoptosis of lung eosinophils due to low expression of survivin contributes to the limitation of pathology in CBA/Ca mice Changes in gene expression in the lungs of 4 individual of BALB/c mice challenged with OVA were monitored using the lungs of 4 individual BALB/c mice challenged with PBS as the control. The microarray analysis was performed in quadruplicate. Changes in gene expression in the lungs of 4 individual of CBA/Ca mice challenged with OVA were monitored using the lungs of 4 individual CBA/Ca mice challenged with PBS as the control. The microarray analysis was performed in quadruplicate. Changes in gene expression in the lungs of 4 individual of BALB/c mice challenged with OVA were monitored using the lungs of 4 individual CBA/Ca mice challenged with OVA as the control. The microarray analysis was performed in quadruplicate. Twelve dual channel microarray slides were used in the overall design of this experiment.
Project description:Humans vary markedly in their propensity to develop asthma, despite often being exposed to similar environmental stimuli. Similarly, mouse strains vary in susceptibility to airways pathology in experimental asthma. Sensitization and aerosol challenge with ovalbumin (OVA) induces eosinophil accumulation, mucus production and airways obstruction in BALB/c and C57BL/6 mice. In contrast, CBA/Ca mice show relatively little pathology. Allergen-induced production of IL-4, IL-5, IL-10 and IFN-g was detected in all three strains, with BALB/c mice generating the highest levels of IL-4, IL-5 and IL-10. Microarray analysis was used to identify genes differentially regulated in lung tissue after OVA challenge. Differentially regulated genes in the lungs of the asthma-susceptible C57BL/6 and BALB/c strains numbered 242 and 145, respectively, whereas only 42 genes were differentially expressed in the resistant CBA/Ca strain. In C57BL/6 mice, transcripts were enriched for adhesion molecules and this was associated with high levels of eosinophil recruitment. Differentially regulated genes in the lungs of only the asthma-susceptible strains numbered 64 and several of these have not previously been associated with asthma. Many of the genes differentially regulated in the susceptible strains were enzymes involved in inflammation. Using network analysis, mRNA for the anti-apoptotic protein survivin was found to be up-regulated in the lungs following allergen challenge. Survivin mRNA and protein were also expressed at high levels in eosinophils recovered by bronchoalveolar lavage from BALB/c and C57BL/6 mice. We propose that rapid apoptosis of lung eosinophils due to low expression of survivin contributes to the limitation of pathology in CBA/Ca mice Humans vary markedly in their propensity to develop asthma, despite often being exposed to similar environmental stimuli. Similarly, mouse strains vary in susceptibility to airways pathology in experimental asthma. Sensitization and aerosol challenge with ovalbumin (OVA) induces eosinophil accumulation, mucus production and airways obstruction in BALB/c and C57BL/6 mice. In contrast, CBA/Ca mice show relatively little pathology. Allergen-induced production of IL-4, IL-5, IL-10 and IFN-g was detected in all three strains, with BALB/c mice generating the highest levels of IL-4, IL-5 and IL-10. Microarray analysis was used to identify genes differentially regulated in lung tissue after OVA challenge. Differentially regulated genes in the lungs of the asthma-susceptible C57BL/6 and BALB/c strains numbered 242 and 145, respectively, whereas only 42 genes were differentially expressed in the resistant CBA/Ca strain. In C57BL/6 mice, transcripts were enriched for adhesion molecules and this was associated with high levels of eosinophil recruitment. Differentially regulated genes in the lungs of only the asthma-susceptible strains numbered 64 and several of these have not previously been associated with asthma. Many of the genes differentially regulated in the susceptible strains were enzymes involved in inflammation. Using network analysis, mRNA for the anti-apoptotic protein survivin was found to be up-regulated in the lungs following allergen challenge. Survivin mRNA and protein were also expressed at high levels in eosinophils recovered by bronchoalveolar lavage from BALB/c and C57BL/6 mice. We propose that rapid apoptosis of lung eosinophils due to low expression of survivin contributes to the limitation of pathology in CBA/Ca mice Changes in gene expression in the lungs of 4 individual of BALB/c mice challenged with OVA were monitored using the lungs of 4 individual BALB/c mice challenged with PBS as the control. The microarray analysis was performed in quadruplicate. Changes in gene expression in the lungs of 4 individual of CBA/Ca mice challenged with OVA were monitored using the lungs of 4 individual CBA/Ca mice challenged with PBS as the control. The microarray analysis was performed in quadruplicate. Changes in gene expression in the lungs of 4 individual of BALB/c mice challenged with OVA were monitored using the lungs of 4 individual CBA/Ca mice challenged with OVA as the control. The microarray analysis was performed in quadruplicate. Twelve dual channel microarray slides were used in the overall design of this experiment.
Project description:Background: Inhalation exposure to biological particulate matter (BioPM) from livestock farms may provoke exacerbations in subjects suffering from allergy and asthma. The aim of this study was to use a murine model of allergic asthma to determine the effect of BioPM derived from goat farm on airway allergic responses Methods: Fine (< 2.5 μm) BioPM was collected from an indoor goat stable. Female BALB/c mice were ovalbumin (OVA) sensitized and challenged with OVA or saline as control. The OVA and saline groups were divided in sub-groups and exposed intranasally to different concentrations (0, 0.9, 3, or 9 μg) of goat farm BioPM. Bronchoalveolar lavage fluid (BALF), blood and lung tissues were collected. Results: In saline-challenged mice, goat farm BioPM alone induced a dose-dependent increase in neutrophils in BALF and induced production of macrophage inflammatory protein-3a). In OVA-challenged mice, BioPM significantly enhanced 1) inflammatory cells in BALF, 2) OVA-specific Immunoglobulin (Ig)G1, 3) interleukin-23 production, 4) airway mucus secretion-specific gene expression. RNAseq analysis of lungs indicates that neutrophil chemotaxis and oxidation-reduction processes were the representative genomic pathways in saline and OVA-challenged mice, respectively. Conclusions: A single exposure to goat farm BioPM enhanced airway inflammation in both saline and OVA-challenged allergic mice, with neutrophilic response as Th17 disorder and eosinophilic response as Th2 disorder indicative of the severity of allergic responses. Identification of the mode of action by which farm PM interacts with airway allergic pathways will be useful to design potential therapeutic approaches.
Project description:To gain insight into the promoting effect of ultrafine particle inhalation on development and progression of allergic asthma, we selected an experimental approach involving exposure to ultrafine carbon particles (UCP) and gene expression profiling of lungs from mice with experimental, ovalbumin induced allergy. Comparative gene expression analysis was performed by hybridizing pooled cDNA samples from lavaged lungs of different groups. These results suggest that allergic sensitization may represent a susceptibility factor for effects of UCP on gene expression in the lung. In sensitized individuals UCP exposure, such as found in polluted air, thus may contribute to the development and /or aggravation of allergic asthma. Keywords: Particle Inhalation, lung, ovalbumin sensitzed and challanged, experssion profiling Lungs of groups of six non-sensitized, ovalbumin sensitized, or sensitized and ovalbumin challenged BALB/cJ mice, either subjected to particle-free or UCP containing air; two replicates including one dye swap experiment have been performed for lungs: a) non-sensitized particle free air versus sensitized and ovalbumin challenged sensitized particle free air; b) non-sensitized UCP containing air versus sensitized and ovalbumin challenged sensitized UCP containing air
Project description:Studying the proteomes of tissue-derived extracellular vesicles (EVs) can lead to the identifica-tion of biomarkers of disease and can provide a better understanding of cell-to-cell communica-tion in both healthy and diseased tissue. The aim of this study was to apply our previously es-tablished tissue-derived EV isolation protocol to mouse lungs in order to determine the changes in the proteomes of lung tissue-derived EVs during allergen-induced eosinophilic airway in-flammation. A mouse model for allergic airway inflammation was used by sensitizing the mice intraperitoneal with ovalbumin (OVA), and one week after the final sensitization, the mice were challenged intranasal with OVA or PBS. The animals were sacrificed 24 h after the final chal-lenge, and their lungs were removed and sliced into smaller pieces that were incubated in cul-ture media with DNase I and Collagenase D for 30 min at 37 °C. Vesicles were isolated from the medium by ultracentrifugation and bottom-loaded iodixanol density cushions, and the proteo-mes were determined using quantitative mass spectrometry. More EVs were present in the lungs of the OVA-challenged mice compared to the PBS-challenged control mice. In total, 4510 proteins were quantified in all samples. Among them, over 1000 proteins were significantly altered (fold change >2), with 614 proteins being increased and 425 proteins being decreased in the EVs from OVA-challenged mice compared to EVs from PBS-challenged animals. The associated cellular components and biological processes were analyzed for the altered EV proteins, and the proteins enriched during allergen-induced airway inflammation were mainly associated with gene on-tology (GO) terms related to immune responses. In conclusion, EVs can be isolated from mouse lung tissue, and the EVs’ proteomes undergo changes in response to allergen-induced airway in-flammation. This suggests that the composition of lung-derived EVs is altered in diseases asso-ciated with inflammation of the lung, which may have implications in type-2 driven eosino-philic asthma pathogenesis.
Project description:Allergen exposure was thought to play a critical role in the etiology of AR. And allergen avoidance, the practice of avoiding exposure to allergens, has been generally advised as the management of AR. However, the effect is uncertain and the underlying mechanism is far from known. We used gene expression microarrays to identify genes differentially regulated by allergen avoidance in allergic rhinitis mouse model. Affymetrix Mouse Gene 1.0 ST arrays were used to identify the expression profiling of nasal mucosa in three groups of mice: (1) mice sensitized and challenged with saline (control group); (2) mice sensitized and challenged with ovalbumin (OVA) and sacrificed 2 hours after the last challenge (OVA group); (3) mice sensitized and challenged with OVA and sacrificed 4 weeks after the last challenge (4w-after group).
Project description:Diesel exhaust (DE) has been shown to enhance allergic sensitization in animals following high dose instillation or chronic inhalation exposure scenarios. The purpose of this study was to determine if short term exposures to diluted DE enhance allergic immune responses to antigen, and identify possible mechanisms using microarray technology. BALB/c mice were exposed to filtered air or diluted DE to yield particle concentrations of 500 or 2000 µg/m3 4 hr/day on days 0-4. Mice were sensitized intranasally with ovalbumin (OVA) antigen or saline on days 0-2, and 18 and all were challenged with OVA on day 28. Mice were necropsied either 4 hrs after the last DE exposure on day 4, or 18, 48, and 96 hrs after challenge. Immunological endpoints included OVA-specific serum IgE, biochemical and cellular profiles of bronchoalveolar lavage (BAL), and cytokine production in the BAL. OVA-sensitized mice exposed to both concentrations of DE had increased eosinophils, neutrophils, lymphocytes, and IL-6 post-challenge compared to OVA control, while DE/saline exposure yielded increases in neutrophils at the high dose only. Microarray analysis demonstrated distinct gene expression profiles for the high dose DE/OVA and DE/saline groups. DE/OVA induced pathways involved in oxidative stress and metabolism while DE in the absence of allergen sensitization modulated cell cycle control, growth and differentiation, G-proteins, and cell adhesion pathways. This study shows for the first time early changes in gene expression induced by the combination of diesel exhaust inhalation and antigen sensitization, which resulted in stronger development of an allergic asthma phenotype. Experiment Overall Design: Lung RNA was isolated from mice exposed to filtered air, 500 ug/m3 DE, or 2000 ug/m3 DE with or without OVA for a total of 6 exposure groups. Each group had 4 replicates for a total of 24 microarrays.
Project description:Murine Pulmonary Responses to Ambient Baltimore Particulate Matter: Genomic Analysis and Contribution to Airway Hyperresponsiveness; Asthma is a complex disease characterized by airway hyperresponsiveness (AHR) and chronic airway inflammation. Environmental factors such as ambient particulate matter (PM), a major air pollutant, has been demonstrated in epidemiological studies to contribute to asthma exacerbation and increased asthma prevalence. OBJECTIVE: We investigated the genomic and pathophysiological effects of Baltimore PM (median diameter 1.78 µm) in a murine model of asthma to identify potential biomarkers. METHODS: A/J mice with ovalbumin (OVA) âinduced AHR were exposed to PM (20 mg/kg, intratracheal), and both AHR and bronchoalveolar lavage (BAL) were assayed on days 1, 4, and 7 post exposure. Lung gene expression profiling (Affymetrix Mouse430_ 2.0) by PM (20 mg/kg, intratracheal) were assayed on OVA- and / or PM--challenged mice. RESULTS: Significant increases of airway responsiveness in OVA-treated mice were observed, indicating an asthmatic phenotype. Ambient PM exposure induced significant changes in AHR in both naive mice and OVA-induced asthmatic mice. In both naive and OVA challenged asthmatic mice, PM induced eosinophil and neutrophil infiltration into airways, elevated BAL protein content, and stimulated secretion of TH1 cytokines (IFN-g, IL-6, and TNF-a) and TH2 cytokines (IL-4, IL-5, and eotaxin) into BAL. Consistent with these results, PM induced expression of genes of innate immune response, chemotaxis and complementary system. CONCLUSION: These studies, consistent with epidemiological data, indicate that PM increases AHR and lung inflammation in naïve mice and exacerbates the asthma phenotype of increased AHR and gene expression pattern changes correlated with acute lung inflammation and airway damage. We used microarrays to detail the global programme of gene expression induced by rhPBEF treatment and VALI. Experiment Overall Design: animals were treated by PBS, Oval albumin, PM, or both OVA/PM
Project description:Epidemiological studies have linked exposure to ambient particulate matter (PM) with increased asthmatic symptoms. Diesel exhaust particles (DEP) are a predominant source of vehicle derived ambient PM, and experimental studies have demonstrated that they may have adjuvant potential when given with an antigen. We previously compared 3 DEP samples: N-DEP, A-DEP, and C-DEP in a murine ovalbumin (OVA) mucosal sensitization model and reported the adjuvant activity to be: C-DEP ? A-DEP > N-DEP. The present study analyzed gene expression changes from the lungs of these mice. Transcription profiling demonstrated that all the DEP samples altered cytokine and toll-like receptor pathways regardless of type, with or without antigen sensitization. Further analysis of DEP exposure with OVA showed that all DEP treatments altered networks involved in immune and inflammatory responses. The A- and C-DEP/OVA treatments induced differential expression of apoptosis pathways in association with stronger adjuvant responses, while expression of cell cycle control and DNA damage pathways were also altered in the C-DEP/OVA treatment. This comprehensive approach using gene expression analysis to examine changes at a pathway level provides detailed information on events occurring in the lung after DEP exposure, and confirms that the most bioactive sample induced many more individual genes and changes in immuno-regulatory and homeostatic pathways. Female BALB/C mice (8-10 weeks old) were randomly divided into 8 treatment groups containing 3 mice each and exposed to saline, 20 ug ovalbumin, 150 ug diesel exhaust particles (either C-DEP, A-DEP, or N-DEP), or diesel exhaust particles + ovalbumin by intranasal instillation on Days 0 and 13 and necropsied 18 hrs latter.
Project description:Challenge with ovalbumin antigen is a common model for asthma in mice. We sought to identify the gene expression differences in lung tissue in naïve and OVA-sensitized mice, in response to OVA challenge.