Project description:This SuperSeries is composed of the following subset Series: GSE32105: Expression data from mouse livers lacking STAT3 and RelA during pneumonia GSE35513: Expression data from mouse livers lacking NF-kappaB RelA (p65) during pneumonia GSE35514: Expression data from mouse livers lacking STAT3 during pneumonia GSE35515: Expression data from mouse livers expressing or lacking Cre recombinase during pneumonia Refer to individual Series
Project description:A common response to physiological duress is the hepatic acute phase response, a process during which the expression of many genes is altered in the liver. Amongst these transcripts are those encoding acute phase proteins, defined as circulating proteins with significantly changed concentrations during an acute phase response. The goal of this study was to determine the influence of two transcription factors, STAT3 and NF-kappaB p65 (RelA), on hepatic gene changes including but not limited to acute phase proteins during bacterial pneumonia. Using the Cre-LoxP system, mice were generated with combined functional deletions of both STAT3 and RelA in hepatocytes. In mutant mice, Cre-recombinase was expressed under transcriptional control of an albumin promoter in the presence of homozygous floxed alleles for both STAT3 and RelA. Wild-type control mice lacked the Cre-recombinase transgene. Microarray analysis was performed on liver RNA collected from both genotypes of mice in the absence and presence of pneumococcal pneumonia. RNA from 4 separate groups of mice (3 mice per group) was analyzed: 1) Uninfected wild-type control mice; 2) Uninfected mutant mice lacking liver STAT3 and RelA; 3) Control mice infected intratracheally for 24h with 10^6 CFU of Streptococcus pneumoniae (serotype 3); and 4) Mutant mice infected intratracheally for 24h with 10^6 CFU of Streptococcus pneumoniae (serotype 3).
Project description:A common response to physiological duress is the hepatic acute phase response, a process during which the expression of many genes is altered in the liver. Amongst these transcripts are those encoding acute phase proteins, defined as circulating proteins with significantly changed concentrations during an acute phase response. The goal of this study was to determine the influence of two transcription factors, STAT3 and NF-kappaB p65 (RelA), on hepatic gene changes including but not limited to acute phase proteins during bacterial pneumonia. Using the Cre-LoxP system, mice were generated with combined functional deletions of both STAT3 and RelA in hepatocytes. In mutant mice, Cre-recombinase was expressed under transcriptional control of an albumin promoter in the presence of homozygous floxed alleles for both STAT3 and RelA. Wild-type control mice lacked the Cre-recombinase transgene. Microarray analysis was performed on liver RNA collected from both genotypes of mice in the absence and presence of pneumococcal pneumonia.
Project description:To investigate the differences in microRNA expression profiles between fibrotic and normal livers, we performed microRNA microarrays for total RNA extracts isolated from mouse livers treated with carbontetrachloride (CCl4) or corn-oil for 10 weeks (n=3/group). MicroRNAs were considered to have significant differences in expression level when the expression difference showed more than two-fold change between the experimental and control groups at p<0.05. We found that 12 miRNAs were differentially expressed in CCl4-induced fibrotic liver.
Project description:Introgressed variants from other species can be an important source of genetic variation because they may arise rapidly, can include multiple mutations on a single haplotype, and have often been pretested by selection in the species of origin. Although introgressed alleles are generally deleterious, several studies have reported introgression as the source of adaptive alleles-including the rodenticide-resistant variant of Vkorc1 that introgressed from Mus spretus into European populations of Mus musculus domesticus. Here, we conducted bidirectional genome scans to characterize introgressed regions into one wild population of M. spretus from Spain and three wild populations of M. m. domesticus from France, Germany, and Iran. Despite the fact that these species show considerable intrinsic postzygotic reproductive isolation, introgression was observed in all individuals, including in the M. musculus reference genome (GRCm38). Mus spretus individuals had a greater proportion of introgression compared with M. m. domesticus, and within M. m. domesticus, the proportion of introgression decreased with geographic distance from the area of sympatry. Introgression was observed on all autosomes for both species, but not on the X-chromosome in M. m. domesticus, consistent with known X-linked hybrid sterility and inviability genes that have been mapped to the M. spretus X-chromosome. Tract lengths were generally short with a few outliers of up to 2.7 Mb. Interestingly, the longest introgressed tracts were in olfactory receptor regions, and introgressed tracts were significantly enriched for olfactory receptor genes in both species, suggesting that introgression may be a source of functional novelty even between species with high barriers to gene flow.