Project description:This SuperSeries is composed of the following subset Series: GSE33081: Identification of GLD-1 target mRNAs GSE33082: mRNA expression analysis in wild-type, gld-1 and cgh-1 mutant animals GSE33083: Polysome profiling of wild-type and gld-1 mutant animals GSE36713: mRNA expression analysis in mock and cgh-1(RNAi) animals Refer to individual Series
Project description:C. elegans GLD-2 forms an active PAP with multiple RNA-binding partners to regulate diverse aspects of germline and early embryonic development. One GLD-2 partner, RNP-8, was previously shown to influence oocyte fate specification. To identify transcripts selectively associated with both GLD-2 and RNP-8, we employ a genomic approach using the method of RNA immunoprecipitation followed by microarray analysis (RIP-chip). We used microarrays to identify mRNAs selectively associated with either GLD-2 or RNP-8.
Project description:Animal mRNAs are regulated by hundreds of RNA binding proteins (RBPs). The identification of RBP targets is crucial for understanding their function. A recent method, PAR-CLIP, uses photoreactive nucleosides to crosslink RBPs to target RNAs in cells prior to immunoprecipitation. Here, we establish iPAR-CLIP (in vivo PAR-CLIP) to determine, at nucleotide resolution, transcriptome-wide target sites of GLD-1, a conserved, germline-specific translational repressor in C. elegans. We identified 439 reproducible targets and demonstrate an excellent dynamic range of target detection by iPAR-CLIP. Upon GLD-1 knock-down, protein but not mRNA expression of the 439 targets was specifically and highly significantly upregulated, demonstrating functionality. Finally, we discovered strongly conserved GLD-1 binding sites nearby the start codon of target genes. We propose that GLD-1 interacts with the translation machinery nearby the start codon, a so far unknown mode of gene regulation in eukaryotes.
Project description:Animal mRNAs are regulated by hundreds of RNA binding proteins (RBPs). The identification of RBP targets is crucial for understanding their function. A recent method, PAR-CLIP, uses photoreactive nucleosides to crosslink RBPs to target RNAs in cells prior to immunoprecipitation. Here, we establish iPAR-CLIP (in vivo PAR-CLIP) to determine, at nucleotide resolution, transcriptome-wide target sites of GLD-1, a conserved, germline-specific translational repressor in C. elegans. We identified 439 reproducible targets and demonstrate an excellent dynamic range of target detection by iPAR-CLIP. Upon GLD-1 knock-down, protein but not mRNA expression of the 439 targets was specifically and highly significantly upregulated, demonstrating functionality. Finally, we discovered strongly conserved GLD-1 binding sites nearby the start codon of target genes. We propose that GLD-1 interacts with the translation machinery nearby the start codon, a so far unknown mode of gene regulation in eukaryotes.