Project description:Young adult fer-15;fem-1 Caenorhabditis elegans were infected with Staphylococcus aureus for 8 h to determine the transcriptional host response to Staphylococcus aureus. Analysis of differential gene expression in C. elegans young adults exposed to two different bacteria: E. coli strain OP50 (control), wild-type Staphylococcus aureus RN6390. Samples were analyzed at 8 hours after exposure to the different bacteria. These studies identified C. elegans genes induced by pathogen infection. Keywords: response to pathogen infection, innate immunity, host-pathogen interactions
Project description:The Caenorhabditis elegans bus (bacterial unswollen) mutants were isolated by their altered response to the nematode pathogen Microbacterium nematophilum. The bus-2, bus-4 and bus-17 mutants are resistant to infection by this bacterium and to infection by human pathogens Yersinia pestis and Yersinia pseudotuberculosis. Here we extend that list to Staphylococcus aureus. The bus-2, bus-4 and bus-17 mutants each harbors a defect in a different glycosyltransferase involved in O-glycosylation. Glycomics analysis of these strains reveals significant O-glycosylation defects. We further investigated the nature of bus mutant phenotypes in bus-2, bus-4 and bus-17 by gene expression analysis. Three distinct areas of altered expression were identified: 1) N- and O-glycosylation; 2) innate immune response; 3) protein folding and editing control. As expected N- and O-glycosylation gene expression was altered at key enzymatic steps. Innate immune system expression patterns were altered in a way that significantly overlapped with expression patterns seen in wild-type upon exposure to Staphylococuss aureus. Upon infection with S. aureus markers of innate immune activity increased significantly compared to wild-type. The abu/pqn genes, active in the non-canonical unfolded protein response (UPR) pathway were dramatically upregulated in bus when these mutants were exposed to the pathogen. This work demonstrates a genetic link between O-glycosylation and expression of key components of the innate immune response.
Project description:We sequenced the transcriptome of a host (Caenorhabditis elegans) following its interaction with a non-native bacterium (Enterococcus faecalis) that has protective traits against the pathogen, Staphylococcus aureus. We also investigated the impact that the evolutionary history of the protective bacterium has on the transcriptional history of the host. We tested protective bacteria that had either coevolved against the pathogen within C. elegans, or had evolved on its own within C. elegans.
Project description:Transcriptional profiling of C. elegans young adult worms exposed to pathogen Staphylococcus aureus for 4 hours versus age-matched worms exposed to onctrol lab food E. coli OP50. The goal was to identify genes regulated in response to pathogen. The broader goal of study was to study evolution of pathogen response by comparing this expression profile to that obtained by exposing the nematode Pristionchus pacificus to the same pathogen. Other experiments which are a part of this study include expression profiling of C. elegans and P. pacificus on other pathogens including Staphylococcus aureus, Serratia marcescens, Xenorhabdus nematophila. Keywords: Expression profiling by array One-condition experiments. C. elegans young adults: Exposed to Staphylococcus aureus versus exposed to E. coli OP50 : 4 hours. 4 biological replicates for each condition, including 2 dye-swaps.
Project description:Transcriptional profiling of C. elegans young adult worms exposed to pathogen Staphylococcus aureus for 4 hours versus age-matched worms exposed to control lab food E. coli OP50. The goal was to identify genes regulated in response to pathogen. The broader goal of study was to study evolution of pathogen response by comparing this expression profile to that obtained by exposing the nematode Pristionchus pacificus to the same pathogen. Other experiments which are a part of this study include expression profiling of C. elegans and P. pacificus on other pathogens including Staphylococcus aureus, Serratia marcescens, Xenorhabdus nematophila. Keywords: Expression profiling by array
Project description:This SuperSeries is composed of the following subset Series: GSE36413 : C. elegans young adults : Exposed to Bacillus thuringiensis DB27 vs. E. coli OP50 exposure; 4hours GSE36493: C. elegans young adults: Exposed to Staphylococcus aureus versus exposed to E. coli OP50 : 4 hours GSE36499: C. elegans young adults: Exposed to Serratia marcescens versus exposed to E. coli OP50 : 4 hours GSE36501: C. elegans young adults: Exposed to Xenorhabdus nematophila versus exposed to E. coli OP50 : 4 hours GSE36517: P. pacificus young adults: Exposed to Bacillus thuringiensis DB27 versus exposed to E. coli OP50 : 4 hours GSE36519: P. pacificus young adults: Exposed to Staphylococcus aureus versus exposed to E. coli OP50 : 4 hours GSE36521: P. pacificus young adults: Exposed to Serratia marcescens versus exposed to E. coli OP50 : 4 hours GSE36523: P. pacificus young adults: Exposed to Xenorhabdus nematophila versus exposed to E. coli OP50 : 4 hours Refer to individual Series
Project description:Traditional treatments for bacterial infection have focused upon directly inhibiting growth of the pathogen. However, an equally important determinant of infection outcome is the host defense response. We previously performed a high-throughput chemical screen to identify small molecules that rescued the nematode Caenorhabditis elegans from infection by Pseudomonas aeruginosa. Over 20 of the hits stimulated host defense gene expression. During in-depth studies of five such molecules using microarray analysis, bioinformatic clustering, and RNAi knockdown of candidate gene targets, we identified PMK-1/p38 MAPK and SKN-1/Nrf2 as two key pathways modulated by these hits. Interestingly, the molecules studied did not depend on a single pathway for ameliorating P. aeruginosa pathogenesis in liquid-based assay, but did rely on the PMK-1/p38 MAPK pathway during a colonization-based infection assay on agar. A subset of these molecules was also protective against Enterococcus faecalis and Staphylococcus aureus. In general, the compounds showed little toxicity against mammalian cells or worms, consistent with their identification in a phenotypic, high-content screen. These molecules possess significant potential for use as tools to study innate immune processes
Project description:After measuring the transcriptional response to increasing exposure of Caenorhabditis elegans N2 to 35 degrees Celsius, we wondered how recovery from heat-stress would progress. Hence, we exposed populations of the N2 strain to a 2 hour heat-shock of 35 degrees Celsius and took samples from 0 - 7 hours after termination of stress. This experiment was conduced in three biological replicates.