Project description:This SuperSeries is composed of the following subset Series: GSE35751: Comparative analysis of S100a10-expressing cortical pyramidal cells and whole cortex GSE35758: Comparative analysis of S100a10 and Glt25d2 cortical pyramidal cells GSE35761: Effect of fluoxetine treatment on translational profiles of S100a10 cortical pyramidal cells GSE35763: Effect of fluoxetine treatment on translational profiles of Glt25d2 cortical pyramidal cells GSE35765: Effect of fluoxetine treatment on translational profiles of S100a10 cortical pyramidal cells in p11 KOs Refer to individual Series
Project description:Selective serotonin reuptake inhibitors (SSRIs) are commonly prescribed antidepressant drugs in pregnant women. Given that SSRIs can cross the placental and blood-brain barriers, these drugs potentially affect serotonergic neurotransmission and neurodevelopment in the fetus. Although no gross SSRI-related teratogenic effect has been reported, infants born following prenatal exposure to SSRIs have a higher risk for various behavioral abnormalities. Therefore, we examined the effects of prenatal fluoxetine, the most commonly prescribed SSRI, on social and cognitive behavior in mice. Intriguingly, chronic in utero fluoxetine treatment impaired working memory and social novelty recognition in adult males with augmented spontaneous inhibitory synaptic transmission onto the layer 5 pyramidal neurons in the medial prefrontal cortex (mPFC). Moreover, fast-spiking interneurons in the layer 5 mPFC exhibited enhanced basal intrinsic excitability, augmented serotonin-induced neuronal excitability, and increased inhibitory synaptic transmission onto the layer 5 pyramidal neurons due to augmented 5-HT2A receptor (5-HT2AR) signaling. More importantly, the observed behavioral deficits of in utero fluoxetine-treated mice could be reversed by acute systemic application of 5-HT2AR antagonist. Taken together, our findings support the notion that alterations in serotonin-mediated inhibitory neuronal modulation result in reduced cortical network activities and cognitive impairment following prenatal exposure to SSRIs.
Project description:Introgressed variants from other species can be an important source of genetic variation because they may arise rapidly, can include multiple mutations on a single haplotype, and have often been pretested by selection in the species of origin. Although introgressed alleles are generally deleterious, several studies have reported introgression as the source of adaptive alleles-including the rodenticide-resistant variant of Vkorc1 that introgressed from Mus spretus into European populations of Mus musculus domesticus. Here, we conducted bidirectional genome scans to characterize introgressed regions into one wild population of M. spretus from Spain and three wild populations of M. m. domesticus from France, Germany, and Iran. Despite the fact that these species show considerable intrinsic postzygotic reproductive isolation, introgression was observed in all individuals, including in the M. musculus reference genome (GRCm38). Mus spretus individuals had a greater proportion of introgression compared with M. m. domesticus, and within M. m. domesticus, the proportion of introgression decreased with geographic distance from the area of sympatry. Introgression was observed on all autosomes for both species, but not on the X-chromosome in M. m. domesticus, consistent with known X-linked hybrid sterility and inviability genes that have been mapped to the M. spretus X-chromosome. Tract lengths were generally short with a few outliers of up to 2.7 Mb. Interestingly, the longest introgressed tracts were in olfactory receptor regions, and introgressed tracts were significantly enriched for olfactory receptor genes in both species, suggesting that introgression may be a source of functional novelty even between species with high barriers to gene flow.
Project description:Translational profiling of cortical layer5a neurons in response to stress and normalization by SSRI, Fluoxetine (Flx). Some Flx-treated animals were anxious.