Project description:A singleplex PCR assay using a single primer pair targeting the putative sugar transporter gene was developed here to distinguish Cryptococcus neoformans var. grubii, Cryptococcus neoformans var. neoformans, and Cryptococcus gattii according to the distinct size of the amplicon. The interspecies and intravarietal hybrids were also characterized on the basis of distinct combined profiles of amplicons. This PCR assay is a rapid, simple, and reliable approach suitable for laboratory diagnoses and large-scale epidemiologic studies.
Project description:UNLABELLED:The accumulation of genomic structural variation between closely related populations over time can lead to reproductive isolation and speciation. The fungal pathogen Cryptococcus is thought to have recently diversified, forming a species complex containing members with distinct morphologies, distributions, and pathologies of infection. We have investigated structural changes in genomic architecture such as inversions and translocations that distinguish the most pathogenic variety, Cryptococcus neoformans var. grubii, from the less clinically prevalent Cryptococcus neoformans var. neoformans and Cryptococcus gattii. Synteny analysis between the genomes of the three Cryptococcus species/varieties (strains H99, JEC21, and R265) reveals that C. neoformans var. grubii possesses surprisingly few unique genomic rearrangements. All but one are relatively small and are shared by all molecular subtypes of C. neoformans var. grubii. In contrast, the large translocation peculiar to the C. neoformans var. grubii type strain is found in all tested subcultures from multiple laboratories, suggesting that it has possessed this rearrangement since its isolation from a human clinical sample. Furthermore, we find that the translocation directly disrupts two genes. The first of these encodes a novel protein involved in metabolism of glucose at human body temperature and affects intracellular levels of trehalose. The second encodes a homeodomain-containing transcription factor that modulates melanin production. Both mutations would be predicted to increase pathogenicity; however, when recreated in an alternate genetic background, these mutations do not affect virulence in animal models. The type strain of C. neoformans var. grubii in which the majority of molecular studies have been performed is therefore atypical for carbon metabolism and key virulence attributes. IMPORTANCE:The fungal pathogen Cryptococcus is a major cause of mortality among the immunocompromised population, primarily in AIDS patients of sub-Saharan Africa. Most research into the particular variety of Cryptococcus responsible for the vast majority of infections, Cryptococcus neoformans var. grubii, is performed using the type strain isolated in 1978 from a Hodgkin's disease patient from North Carolina. We have determined that this particular isolate contains a chromosomal translocation that directly interrupts two genes, which all descendants of this strain from various research laboratories appear to possess. Disruption of these two genes affects multiple virulence factors of Cryptococcus, particularly the ability to grow at human body temperature, which could have wide-ranging implications for molecular genetic studies and virulence assays using this important strain.
Project description:The pathogenic species of Cryptococcus are a major cause of mortality owing to severe infections in immunocompromised as well as immunocompetent individuals. Although antifungal treatment is usually effective, many patients relapse after treatment, and in such cases, comparative analyses of the genomes of incident and relapse isolates may reveal evidence of determinative, microevolutionary changes within the host. Here, we analyzed serial isolates cultured from cerebrospinal fluid specimens of 18 South African patients with recurrent cryptococcal meningitis. The time between collection of the incident isolates and collection of the relapse isolates ranged from 124 days to 290 days, and the analyses revealed that, during this period within the patients, the isolates underwent several genetic and phenotypic changes. Considering the vast genetic diversity of cryptococcal isolates in sub-Saharan Africa, it was not surprising to find that the relapse isolates had acquired different genetic and correlative phenotypic changes. They exhibited various mechanisms for enhancing virulence, such as growth at 39°C, adaptation to stress, and capsule production; a remarkable amplification of ERG11 at the native and unlinked locus may provide stable resistance to fluconazole. Our data provide a deeper understanding of the microevolution of Cryptococcus species under pressure from antifungal chemotherapy and host immune responses. This investigation clearly suggests a promising strategy to identify novel targets for improved diagnosis, therapy, and prognosis.IMPORTANCE Opportunistic infections caused by species of the pathogenic yeast Cryptococcus lead to chronic meningoencephalitis and continue to ravage thousands of patients with HIV/AIDS. Despite receiving antifungal treatment, over 10% of patients develop recurrent disease. In this study, we collected isolates of Cryptococcus from cerebrospinal fluid specimens of 18 patients at the time of their diagnosis and when they relapsed several months later. We then sequenced and compared the genomic DNAs of each pair of initial and relapse isolates. We also tested the isolates for several key properties related to cryptococcal virulence as well as for their susceptibility to the antifungal drug fluconazole. These analyses revealed that the relapsing isolates manifested multiple genetic and chromosomal changes that affected a variety of genes implicated in the pathogenicity of Cryptococcus or resistance to fluconazole. This application of comparative genomics to serial clinical isolates provides a blueprint for identifying the mechanisms whereby pathogenic microbes adapt within patients to prolong disease.
Project description:Rapid identification of Cryptococcus neoformans var. grubii, Cryptococcus neoformans var. neoformans, and Cryptococcus gattii is imperative for facilitation of prompt treatment of cryptococcosis and for understanding the epidemiology of the disease. Our purpose was to evaluate a test algorithm incorporating commercial rapid biochemical tests, differential media, and DNA sequence analysis that will allow us to differentiate these taxa rapidly and accurately. We assessed 147 type, reference, and clinical isolates, including 6 other Cryptococcus spp. (10 isolates) and 14 other yeast species (24 isolates), using a 4-hour urea broth test (Remel), a 24-hour urea broth test (Becton Dickinson), a 4-hour caffeic acid disk test (Hardy Diagnostics and Remel), 40- to 44-hour growth assessment on l-canavanine glycine bromothymol blue (CGB) agar, and intergenic spacer (IGS) sequence analysis. All 123 Cryptococcus isolates hydrolyzed urea, along with 7 isolates of Rhodotorula and Trichosporon. Eighty-five of 86 C. neoformans (99%) and 26 of 27 C. gattii (96%) isolates had positive caffeic acid results, unlike the other cryptococci (0/10) and yeast species (0/24). Together, these two tests positively identified virtually all C. neoformans/C. gattii isolates (98%) within 4 h. CGB agar or IGS sequencing further differentiated these isolates within 48 h. On CGB, 25 of 27 (93%) C. gattii strains induced a blue color change, in contrast to 0 of 86 C. neoformans isolates. Neighbor-joining cluster analysis of IGS sequences differentiated C. neoformans var. grubii, C. neoformans var. neoformans, and C. gattii. Based on these results, we describe a rapid identification algorithm for use in a microbiology laboratory to distinguish clinically relevant Cryptococcus spp.
Project description:Cryptococcus neoformans var. grubii is the causative agent of cryptococcal meningitis, a significant source of mortality in immunocompromised individuals, typically human immunodeficiency virus/AIDS patients from developing countries. Despite the worldwide emergence of this ubiquitous infection, little is known about the global molecular epidemiology of this fungal pathogen. Here we sequence the genomes of 188 diverse isolates and characterize the major subdivisions, their relative diversity, and the level of genetic exchange between them. While most isolates of C. neoformans var. grubii belong to one of three major lineages (VNI, VNII, and VNB), some haploid isolates show hybrid ancestry including some that appear to have recently interbred, based on the detection of large blocks of each ancestry across each chromosome. Many isolates display evidence of aneuploidy, which was detected for all chromosomes. In diploid isolates of C. neoformans var. grubii (serotype AA) and of hybrids with C. neoformans var. neoformans (serotype AD) such aneuploidies have resulted in loss of heterozygosity, where a chromosomal region is represented by the genotype of only one parental isolate. Phylogenetic and population genomic analyses of isolates from Brazil reveal that the previously "African" VNB lineage occurs naturally in the South American environment. This suggests migration of the VNB lineage between Africa and South America prior to its diversification, supported by finding ancestral recombination events between isolates from different lineages and regions. The results provide evidence of substantial population structure, with all lineages showing multi-continental distributions; demonstrating the highly dispersive nature of this pathogen.
Project description:Cryptococcus neoformans is a human-pathogenic fungus that has evolved into three distinct varieties that infect most prominently the central nervous system. A sexual cycle involving haploid cells of a and alpha mating types has been reported for two varieties (C. neoformans var. neoformans, serotype D, and C. neoformans var. gattii, serotypes B and C), yet the vast majority of infections involve a distinct variety (C. neoformans var. grubii, serotype A) that has been thought to be clonal and restricted to the alpha mating type. We recently identified the first serotype A isolate of the a mating type which had been thought to be extinct (strain 125.91). Here we report that this unusual strain can mate with a subset of pathogenic serotype A strains to produce a filamentous dikaryon with fused clamp connections, basidia, and viable recombinant basidiospores. One meiotic segregant mated poorly with the serotype A reference strain H99 but robustly with a crg1 mutant that lacks a regulator of G protein signaling and is hyperresponsive to mating pheromone. This meiotic segregant was used to create congenic a and alpha mating type serotype A strains. Virulence tests with rabbit and murine models of cryptococcal meningitis showed that the serotype A congenic a and alpha mating type strains had equivalent virulence in animal models, in contrast to previous studies linking the alpha mating type to increased virulence in congenic serotype D strains. Our studies highlight a role for sexual recombination in the evolution of a human fungal pathogen and provide a robust genetic platform to establish the molecular determinants of virulence.
Project description:Most of the species of fungi that cause disease in mammals, including Cryptococcus neoformans var. grubii (serotype A), are exogenous and non-contagious. Cryptococcus neoformans var. grubii is associated worldwide with avian and arboreal habitats. This airborne, opportunistic pathogen is profoundly neurotropic and the leading cause of fungal meningitis. Patients with HIV/AIDS have been ravaged by cryptococcosis--an estimated one million new cases occur each year, and mortality approaches 50%. Using phylogenetic and population genetic analyses, we present evidence that C. neoformans var. grubii may have evolved from a diverse population in southern Africa. Our ecological studies support the hypothesis that a few of these strains acquired a new environmental reservoir, the excreta of feral pigeons (Columba livia), and were globally dispersed by the migration of birds and humans. This investigation also discovered a novel arboreal reservoir for highly diverse strains of C. neoformans var. grubii that are restricted to southern Africa, the mopane tree (Colophospermum mopane). This finding may have significant public health implications because these primal strains have optimal potential for evolution and because mopane trees contribute to the local economy as a source of timber, folkloric remedies and the edible mopane worm.