Project description:This SuperSeries is composed of the following subset Series: GSE35067: Transcriptional changes due to UBP5 mutation under temperature stress GSE36181: Transcript response of CSF survival mutants in CSF or serum GSE36182: Comparison of transcription profiles for C. neoformans during rabbit infection GSE36183: Comparison of transcription profiles of C. neoformans during rabbit or human infection Refer to individual Series
Project description:Cryptococcus neoformans is a human fungal pathogen that is the causative agent of cryptococcosis and fatal meningitis in immuno-compromised hosts. Recent studies suggest that copper (Cu) acquisition plays an important role in C. neoformans virulence, as mutants that lack Cuf1, which activates the Ctr4 high affinity Cu importer, are hypo-virulent in mouse models. To understand the constellation of Cu-responsive genes in C. neoformans and how their expression might contribute to virulence, we determined the transcript profile of C. neoformans in response to elevated Cu or Cu deficiency. We identified two metallothionein genes (CMT1 and CMT2), encoding cysteine-rich Cu binding and detoxifying proteins, whose expression is dramatically elevated in response to excess Cu. We identified a new C. neoformans Cu transporter, CnCtr1, that is induced by Cu deficiency and is distinct from CnCtr4 and which shows significant phylogenetic relationship to Ctr1 from other fungi. Surprisingly, in contrast to other fungi, we found that induction of both CnCTR1 and CnCTR4 expression under Cu limitation, and CMT1 and CMT2 in response to Cu excess, are dependent on the CnCuf1 Cu metalloregulatory transcription factor. These studies set the stage for the evaluation of the specific Cuf1 target genes required for virulence in C. neoformans.
Project description:A flucytosine-responsive APSES protein, Mbs1, plays pleiotropic roles in stress response, differentiation, and virulence of Cryptococcus neoformans
Project description:We measured protein translation (by ribosome profiling) and RNA levels (by polyA-enriched RNA-seq) in Cryptococcus neoformans strain H99 and Cryptococcus neoformans strain JEC21. This is the first transcriptome-wide map of translation in this species complex.
Project description:The infection of Cryptococcus neoformans is acquired through the inhalation of desiccated yeast cells and basidiospores originated from the environment, particularly from bird's droppings and decaying wood. Three environmental strains of C. neoformans originated from bird droppings (H4, S48B and S68B) and C. neoformans reference clinical strain (H99) were used for intranasal infection in C57BL/6 mice. We showed that the H99 strain demonstrated higher virulence compared to H4, S48B and S68B strains. To examine if gene expression contributed to the different degree of virulence among these strains, a genome-wide microarray study was performed to inspect the transcriptomic profiles of all four strains. Our results revealed that out of 7,419 genes (22,257 probes) examined, 65 genes were significantly up-or down-regulated in H99 versus H4, S48B and S68B strains. The up-regulated genes in H99 strain include Hydroxymethylglutaryl-CoA synthase (MVA1), Mitochondrial matrix factor 1 (MMF1), Bud-site-selection protein 8 (BUD8), High affinity glucose transporter 3 (SNF3) and Rho GTPase-activating protein 2 (RGA2). Pathway annotation using DAVID bioinformatics resource showed that metal ion binding and sugar transmembrane transporter activity pathways were highly expressed in the H99 strain. We suggest that the genes and pathways identified may possibly play crucial roles in the fungal pathogenesis.
Project description:Thermotolerance, a key factor essential for the virulence of pathogenic fungi including Cryptococcus neoformans, remains largely unexplored in terms of its underlying mechanism. In this study, our findings demonstrate that Set3C, a widely distributed and conserved histone deacetylase complex, is required for thermotolerance in Cryptococcus neoformans. Specifically, the deletion of the core subunit Set302, responsible for the integrity of the complex, results in a significant reduction in the growth ability under high stress and the viability at extreme temperature. Moreover, the absence of Set302 leads to a decrease in the production of capsule and melanin. Transcriptomics analysis revealed that Set302 regulates a large number of genes compared to normal condition, and their expression is responsive to heat stress. Notably, we observed that Set302 positively influences the expression of genes related to ubiquitin-proteasome system (UPS) at high temperature. Using GFP-α-synuclein overexpression model, we observed a pronounced accumulation of misfolded proteins under heat stress, consequently inhibiting the thermotolerance of Cryptococcus neoformans. Furthermore, the loss of Set302 exacerbates this inhibition of thermotolerance. Interestingly, set302∆ strain exhibits a similar phenotype under proteasome stress as it does under high temperature. We also found that set302∆ strain displayed significantly reduced pathogenicity and colonization ability compared to the wild-type strain in the murine infection model. Collectively, our findings indicate that Set302 modulates the degradation of misfolded proteins through the UPS pathway, thereby affecting the thermotolerance and pathogenicity of Cryptococcus neoformans.