Project description:This SuperSeries is composed of the following subset Series: GSE34808: A transcriptomic analysis of the response of Saccharomyces cerevisiae to increases in NADPH oxidation [2009] GSE34809: A transcriptomic analysis of the response of Saccharomyces cerevisiae to increases in NADPH oxidation [2010] Refer to individual Series
Project description:Saccharomyces cerevisiae is an excellent microorganism for industrial succinic acid production, but high succinic acid concentration will inhibit the growth of Saccharomyces cerevisiae then reduce the production of succinic acid. Through analysis the transcriptomic data of Saccharomyces cerevisiae with different genetic backgrounds under different succinic acid stress, we hope to find the response mechanism of Saccharomyces cerevisiae to succinic acid.
2022-01-09 | GSE193190 | GEO
Project description:A transcriptomic analysis of the response of Saccharomyces cerevisiae to increases in NADPH oxidation
Project description:Industrial bioethanol production may involve a low pH environment,improving the tolerance of S. cerevisiae to a low pH environment caused by inorganic acids may be of industrial importance to control bacterial contamination, increase ethanol yield and reduce production cost. Through analysis the transcriptomic data of Saccharomyces cerevisiae with different ploidy under low pH stress, we hope to find the tolerance mechanism of Saccharomyces cerevisiae to low pH.
Project description:Intact nuclei from an asynchronous population of W303 Saccharomyces cerevisiae in log-phase growth were subjected to a 16-minute DNase I digestion (0.1 U/μL) at 37 °C. DNA was then recovered, and single-end Illumina sequencing libraries were prepared using the Crawford DNase-seq method (Song and Crawford, 2010).
Project description:Here we used mass spectrometry-based proteomics technology to explore SEPs with potential cellular stress function in Saccharomyces cerevisiae. Microproteins with unique peptides were identified under six culture conditions: normal, oxidation, starvation, UV radiation, heat shock, and heat shock with starvation.