Project description:Brucella melitensis and Brucella canis differ by ~75 genes yet B. melitensis is highly virulent for humans while B. canis is considered rarely pathogenic. No identified bacterial factors or mechanisms account for this difference in virulence. To identify functional differences of these two bacteria, gene transcription was examined during infection of murine macrophages and compared to bacteria grown in broth. Our analysis identified transcriptional differences in macrophage infection between B. melitensis and B. canis genes involved in iron transport. Increased transcription of the TonB, enterobactin, and ferric anguibactin transport systems were observed in B. canis but not B. melitensis during infection of macrophages. Therefore, iron appears as an important requirement during the first 24h of infection by B. canis but not for B. melitensis and provides strategies for controlling these pathogens.
Project description:Brucella melitensis and Brucella canis differ by ~75 genes yet B. melitensis is highly virulent for humans while B. canis is considered rarely pathogenic. No identified bacterial factors or mechanisms account for this difference in virulence. To identify functional differences of these two bacteria, gene transcription was examined during infection of murine macrophages and compared to bacteria grown in broth. Our analysis identified transcriptional differences in macrophage infection between B. melitensis and B. canis genes involved in iron transport. Increased transcription of the TonB, enterobactin, and ferric anguibactin transport systems were observed in B. canis but not B. melitensis during infection of macrophages. Therefore, iron appears as an important requirement during the first 24h of infection by B. canis but not for B. melitensis and provides strategies for controlling these pathogens.
Project description:Brucella melitensis and Brucella canis differ by ~75 genes yet B. melitensis is highly virulent for humans while B. canis is considered rarely pathogenic. No identified bacterial factors or mechanisms account for this difference in virulence. To identify functional differences of these two bacteria, gene transcription was examined during infection of murine macrophages and compared to bacteria grown in broth. Our analysis identified transcriptional differences in macrophage infection between B. melitensis and B. canis genes involved in iron transport. Increased transcription of the TonB, enterobactin, and ferric anguibactin transport systems were observed in B. canis but not B. melitensis during infection of macrophages. Therefore, iron appears as an important requirement during the first 24h of infection by B. canis but not for B. melitensis and provides strategies for controlling these pathogens.
Project description:Brucella melitensis and Brucella canis differ by ~75 genes yet B. melitensis is highly virulent for humans while B. canis is considered rarely pathogenic. No identified bacterial factors or mechanisms account for this difference in virulence. To identify functional differences of these two bacteria, gene transcription was examined during infection of murine macrophages and compared to bacteria grown in broth. Our analysis identified transcriptional differences in macrophage infection between B. melitensis and B. canis genes involved in iron transport. Increased transcription of the TonB, enterobactin, and ferric anguibactin transport systems were observed in B. canis but not B. melitensis during infection of macrophages. Therefore, iron appears as an important requirement during the first 24h of infection by B. canis but not for B. melitensis and provides strategies for controlling these pathogens.
Project description:Brucella melitensis and Brucella canis differ by ~75 genes yet B. melitensis is highly virulent for humans while B. canis is considered rarely pathogenic. No identified bacterial factors or mechanisms account for this difference in virulence. To identify functional differences of these two bacteria, gene transcription was examined during infection of murine macrophages and compared to bacteria grown in broth. Our analysis identified transcriptional differences in macrophage infection between B. melitensis and B. canis genes involved in iron transport. Increased transcription of the TonB, enterobactin, and ferric anguibactin transport systems were observed in B. canis but not B. melitensis during infection of macrophages. Therefore, iron appears as an important requirement during the first 24h of infection by B. canis but not for B. melitensis and provides strategies for controlling these pathogens. Comparison of total bacterial RNA from Brucella canis infected murine macrophages to broth grown bacteria
Project description:Brucella melitensis and Brucella canis differ by ~75 genes yet B. melitensis is highly virulent for humans while B. canis is considered rarely pathogenic. No identified bacterial factors or mechanisms account for this difference in virulence. To identify functional differences of these two bacteria, gene transcription was examined during infection of murine macrophages and compared to bacteria grown in broth. Our analysis identified transcriptional differences in macrophage infection between B. melitensis and B. canis genes involved in iron transport. Increased transcription of the TonB, enterobactin, and ferric anguibactin transport systems were observed in B. canis but not B. melitensis during infection of macrophages. Therefore, iron appears as an important requirement during the first 24h of infection by B. canis but not for B. melitensis and provides strategies for controlling these pathogens. comparison of total bacterial RNA from Brucella canis infected murine macrophages and broth grown bacteria
Project description:Brucella melitensis and Brucella canis differ by ~75 genes yet B. melitensis is highly virulent for humans while B. canis is considered rarely pathogenic. No identified bacterial factors or mechanisms account for this difference in virulence. To identify functional differences of these two bacteria, gene transcription was examined during infection of murine macrophages and compared to bacteria grown in broth. Our analysis identified transcriptional differences in macrophage infection between B. melitensis and B. canis genes involved in iron transport. Increased transcription of the TonB, enterobactin, and ferric anguibactin transport systems were observed in B. canis but not B. melitensis during infection of macrophages. Therefore, iron appears as an important requirement during the first 24h of infection by B. canis but not for B. melitensis and provides strategies for controlling these pathogens. Comparison of total bacterial RNA from Brucella canis infected murine macrophages at 5 and 24h
Project description:Brucella melitensis and Brucella canis differ by ~75 genes yet B. melitensis is highly virulent for humans while B. canis is considered rarely pathogenic. No identified bacterial factors or mechanisms account for this difference in virulence. To identify functional differences of these two bacteria, gene transcription was examined during infection of murine macrophages and compared to bacteria grown in broth. Our analysis identified transcriptional differences in macrophage infection between B. melitensis and B. canis genes involved in iron transport. Increased transcription of the TonB, enterobactin, and ferric anguibactin transport systems were observed in B. canis but not B. melitensis during infection of macrophages. Therefore, iron appears as an important requirement during the first 24h of infection by B. canis but not for B. melitensis and provides strategies for controlling these pathogens. Comparison of total bacterial RNA from Brucella melitensis infected murine macrophages to broth grown bacteria
Project description:Investigation of whole genome gene expression level changes in a Brucella melitensis delta prlr mutant compared to the wild type strain. The mutants analyzed in this study are further described in A. Mirabella, R-M Yanez, R.M. Delrue, S. Uzureau, M.S. Zygmunt, A. Cloeckaert, X. De Bolle, J.J. Letesson (2012). The two component system PrlS/PrlR of Brucella melitensis is required for persistence in mice and appears to respond to ionic strength. Microbiology
Project description:Investigation of whole genome gene expression level changes in a Brucella melitensis delta prlr mutant compared to the wild type strain. The mutants analyzed in this study are further described in A. Mirabella, R-M Yanez, R.M. Delrue, S. Uzureau, M.S. Zygmunt, A. Cloeckaert, X. De Bolle, J.J. Letesson (2012). The two component system PrlS/PrlR of Brucella melitensis is required for persistence in mice and appears to respond to ionic strength. Microbiology A six chip study using total RNA recovered from three separate wild-type cultures of Brucella melitensis 16M and three separate cultures of a prlR mutant strain. Each chip measures the expression level of 3,198 genes from Brucella melitensis 16M with nineteen 60 mer probe pairs (PM/MM) per gene, with three-fold technical redundancy.