Project description:This SuperSeries is composed of the following subset Series: GSE34255: Pho85, Pcl1, and Hms1 Signaling Governs Candida albicans Morphogenesis Induced by Elevated Temperature or Hsp90 Compromise [mRNA] GSE34938: Pho85, Pcl1, and Hms1 Signaling Governs Candida albicans Morphogenesis Induced by Elevated Temperature or Hsp90 Compromise [ChIP-chip] Refer to individual Series
Project description:The capacity to sense and transduce temperature signals pervades all aspects of biology, and temperature exerts powerful control over the development and virulence of diverse pathogens. In the leading fungal pathogen of humans, Candida albicans, temperature has a profound impact on morphogenesis, a key virulence trait. Many cues that induce the transition from yeast to filamentous growth are contingent on a minimum temperature of 37ºC, while further elevatation to 39ºC serves as an independent inducing cue. The molecular chaperone Hsp90 is a key regulator of C. albicans temperature-dependent morphogenesis, as induction of filamentous growth requires relief from Hsp90-mediated repression of the morphogenetic program. Compromise of Hsp90 function genetically, pharmacologically, or by elevated temperature induces filamentation in a manner that depends on protein kinase A (PKA) signaling, but is independent of the terminal transcription factor, Efg1. Here, we determine that despite morphological and regulatory differences, inhibition of Hsp90 induces a transcriptional profile similar to that induced by other filamentation cues, and does so in a manner that is independent of Efg1. Further, we identify Hms1 as a transcriptional regulator required for morphogenesis induced by elevated temperature or compromise of Hsp90 function. Hms1 functions downstream of the cyclin Pcl, and the cyclin-dependent kinase Pho85, both of which are required for temperature-dependent filamentation. Upon Hsp90 inhibition, Hms1 binds to DNA elements involved in filamentous growth, including UME6 and RBT5, and regulates their expression, providing a mechanism through which Pho85, Pcl1, and Hms1 govern morphogenesis. Consistent with the importance of morphogenetic flexibility with virulence, deletion of C. albicans HMS1 attenuates virulence in a metazoan model of infection. Thus, we establish a new mechanism through which Hsp90 orchestrates C. albicans morphogenesis, and define novel regulatory circuitry governing a temperature-dependent developmental program, with broad implications for temperature sensing and virulence of microbial pathogens.
Project description:The capacity to sense and transduce temperature signals pervades all aspects of biology, and temperature exerts powerful control over the development and virulence of diverse pathogens. In the leading fungal pathogen of humans, Candida albicans, temperature has a profound impact on morphogenesis, a key virulence trait. Many cues that induce the transition from yeast to filamentous growth are contingent on a minimum temperature of 37ºC, while further elevatation to 39ºC serves as an independent inducing cue. The molecular chaperone Hsp90 is a key regulator of C. albicans temperature-dependent morphogenesis, as induction of filamentous growth requires relief from Hsp90-mediated repression of the morphogenetic program. Compromise of Hsp90 function genetically, pharmacologically, or by elevated temperature induces filamentation in a manner that depends on protein kinase A (PKA) signaling, but is independent of the terminal transcription factor, Efg1. Here, we determine that despite morphological and regulatory differences, inhibition of Hsp90 induces a transcriptional profile similar to that induced by other filamentation cues, and does so in a manner that is independent of Efg1. Further, we identify Hms1 as a transcriptional regulator required for morphogenesis induced by elevated temperature or compromise of Hsp90 function. Hms1 functions downstream of the cyclin Pcl, and the cyclin-dependent kinase Pho85, both of which are required for temperature-dependent filamentation. Upon Hsp90 inhibition, Hms1 binds to DNA elements involved in filamentous growth, including UME6 and RBT5, and regulates their expression, providing a mechanism through which Pho85, Pcl1, and Hms1 govern morphogenesis. Consistent with the importance of morphogenetic flexibility with virulence, deletion of C. albicans HMS1 attenuates virulence in a metazoan model of infection. Thus, we establish a new mechanism through which Hsp90 orchestrates C. albicans morphogenesis, and define novel regulatory circuitry governing a temperature-dependent developmental program, with broad implications for temperature sensing and virulence of microbial pathogens.
Project description:The capacity to sense and transduce temperature signals pervades all aspects of biology, and temperature exerts powerful control over the development and virulence of diverse pathogens. In the leading fungal pathogen of humans, Candida albicans, temperature has a profound impact on morphogenesis, a key virulence trait. Many cues that induce the transition from yeast to filamentous growth are contingent on a minimum temperature of 37ºC, while further elevatation to 39ºC serves as an independent inducing cue. The molecular chaperone Hsp90 is a key regulator of C. albicans temperature-dependent morphogenesis, as induction of filamentous growth requires relief from Hsp90-mediated repression of the morphogenetic program. Compromise of Hsp90 function genetically, pharmacologically, or by elevated temperature induces filamentation in a manner that depends on protein kinase A (PKA) signaling, but is independent of the terminal transcription factor, Efg1. Here, we determine that despite morphological and regulatory differences, inhibition of Hsp90 induces a transcriptional profile similar to that induced by other filamentation cues, and does so in a manner that is independent of Efg1. Further, we identify Hms1 as a transcriptional regulator required for morphogenesis induced by elevated temperature or compromise of Hsp90 function. Hms1 functions downstream of the cyclin Pcl, and the cyclin-dependent kinase Pho85, both of which are required for temperature-dependent filamentation. Upon Hsp90 inhibition, Hms1 binds to DNA elements involved in filamentous growth, including UME6 and RBT5, and regulates their expression, providing a mechanism through which Pho85, Pcl1, and Hms1 govern morphogenesis. Consistent with the importance of morphogenetic flexibility with virulence, deletion of C. albicans HMS1 attenuates virulence in a metazoan model of infection. Thus, we establish a new mechanism through which Hsp90 orchestrates C. albicans morphogenesis, and define novel regulatory circuitry governing a temperature-dependent developmental program, with broad implications for temperature sensing and virulence of microbial pathogens. Two-color experimental design testing the effect of geldanamycin on wild type of delta-efg1 cells. RNA from each replicate came from independent cultures.
Project description:The capacity to sense and transduce temperature signals pervades all aspects of biology, and temperature exerts powerful control over the development and virulence of diverse pathogens. In the leading fungal pathogen of humans, Candida albicans, temperature has a profound impact on morphogenesis, a key virulence trait. Many cues that induce the transition from yeast to filamentous growth are contingent on a minimum temperature of 37ºC, while further elevatation to 39ºC serves as an independent inducing cue. The molecular chaperone Hsp90 is a key regulator of C. albicans temperature-dependent morphogenesis, as induction of filamentous growth requires relief from Hsp90-mediated repression of the morphogenetic program. Compromise of Hsp90 function genetically, pharmacologically, or by elevated temperature induces filamentation in a manner that depends on protein kinase A (PKA) signaling, but is independent of the terminal transcription factor, Efg1. Here, we determine that despite morphological and regulatory differences, inhibition of Hsp90 induces a transcriptional profile similar to that induced by other filamentation cues, and does so in a manner that is independent of Efg1. Further, we identify Hms1 as a transcriptional regulator required for morphogenesis induced by elevated temperature or compromise of Hsp90 function. Hms1 functions downstream of the cyclin Pcl, and the cyclin-dependent kinase Pho85, both of which are required for temperature-dependent filamentation. Upon Hsp90 inhibition, Hms1 binds to DNA elements involved in filamentous growth, including UME6 and RBT5, and regulates their expression, providing a mechanism through which Pho85, Pcl1, and Hms1 govern morphogenesis. Consistent with the importance of morphogenetic flexibility with virulence, deletion of C. albicans HMS1 attenuates virulence in a metazoan model of infection. Thus, we establish a new mechanism through which Hsp90 orchestrates C. albicans morphogenesis, and define novel regulatory circuitry governing a temperature-dependent developmental program, with broad implications for temperature sensing and virulence of microbial pathogens. Genome-wide occupancy experiments (Chip-CHIP) of FLAG-tagged Hms1p from cells grown in the presence or absence of geldanamycin (GldA). Co-precipitating genomic DNA was labelled and hybridized to whole-genome tiling arrays.
Project description:Pho85, Pcl1, and Hms1 Signaling Governs Candida albicans Morphogenesis Induced by Elevated Temperature or Hsp90 Compromise [ChIP-chip]
| PRJNA156143 | ENA
Project description:Pho85, Pcl1, and Hms1 Signaling Governs Candida albicans Morphogenesis Induced by Elevated Temperature or Hsp90 Compromise
Project description:The transcription regulators HMS1, RTG1, RTG3, ZCF21, LYS14 and LYS144 play roles in the proliferation of C. albicans in a mammalian host. Chromatin immunoprecipitation (ChIP) of HMS1-MYC, RTG1-MYC, RTG3-MYC, GFP-ZCF21, GFP-LYS14, GFP-LYS144 followed by array hybridization (Agilent) uncovered a network of target genes required for C. albicans to thrive in the host.
Project description:At human body temperature, the fungal pathogen Candida albicans can transition from yeast to filamentous morphologies in response to host-relevant cues. Additionally, elevated temperatures encountered during febrile episodes can independently induce C. albicans filamentation. However, the underlying genetic pathways governing this developmental transition in response to elevated temperature remain largely unexplored. Here, we conducted a functional genomic screen to unravel the genetic mechanisms orchestrating C. albicans filamentation specifically in response to elevated temperature, implicating 45% of genes associated with the spliceosome or pre-mRNA splicing in this process. Employing RNA-Seq to elucidate the relationship between mRNA splicing and filamentation, we identified greater levels of intron retention in filaments compared to yeast, which correlated with reduced expression of the affected genes. Intriguingly, homozygous deletion of a gene encoding a spliceosome component important for filamentation (PRP19) caused even greater levels of intron retention compared with wild-type and globally dysregulated gene expression. This suggests that intron retention is a mechanism for fine-tuning gene expression during filamentation, with perturbations of the spliceosome exacerbating this process and blocking filamentation. Overall, this study unveils a novel biological process governing C. albicans filamentation, providing new insights into the complex regulation of this key virulence trait.