Project description:This SuperSeries is composed of the following subset Series: GSE33097: Deletion mutant analysis of established glucose signaling and metabolic pathway members in Saccharomyces cerevisiae. GSE33098: Glucose-depletion time-course experiment in Saccharomyces cerevisiae wild-type cells. Refer to individual Series
Project description:To investigate the glucose regulatory system in Saccharomyces cerevisiae, we conducted a time-course in which glucose-depleted wildtype (WT) cells were inoculated into fresh media (SC, 2% glucose). Their subsequent transcriptional output was monitored over a period of five hours by DNA microarrays: samples for gene expression profiling were taken immediately after, as well as 3, 7.5, 15, 30, 60, 110, 150, and 300 minutes after inoculation into fresh medium. Transcripts upregulated are involved in translational processes such as the GO biological processes “ribosome biogenesis” and “ribosome localization”. Transcripts downregulated are enriched for the GO biological processes “cellular respiration” and various metabolism related processes. The time-course was used to verify the physiological relevance of gene expression profiles determined for individual deletions of glucose regulatory system components. Importantly, transcripts up- or downregulated in WT cells upon the addition of glucose are similarly up- or downregulated in deletion mutants that each lack a component of the glucose regulatory system.
Project description:This time course microarray experiment was performed on Saccharomyces cerevisiae to determine the global gene expression alterations due to 3-trifluoromethyl-4-nitrophenol (TFM) exposure over time. In this experiment, yeast grown in standard, glucose-containing media were treated with 0.05mM TFM over a four hour period.
Project description:Saccharomyces cerevisiae is an excellent microorganism for industrial succinic acid production, but high succinic acid concentration will inhibit the growth of Saccharomyces cerevisiae then reduce the production of succinic acid. Through analysis the transcriptomic data of Saccharomyces cerevisiae with different genetic backgrounds under different succinic acid stress, we hope to find the response mechanism of Saccharomyces cerevisiae to succinic acid.
Project description:This study explores the connection between changes in gene expression and the genes that determine strain survival during suspension culture, using the model eukaryotic organism, Saccharomyces cerevisiae. The Saccharomyces cerevisiae homozygous diploid deletion pool, and the BY4743 parental strain were grown for 18 hours in a rotating wall vessel, a suspension culture device optimized to minimize the delivered shear. In addition to the reduced shear conditions, the rotating wall vessels were also placed in a static position or in a shaker in order to change the amount of shear stress on the cells. Keywords: shear stress, time course
Project description:To understand the gene expression in Saccharomyces cerevisiae under fermentative and respiraotry conditions, we perfomred the genome-wide gene expression profiling for the log-phase cells of S. cerevisiae wild type, sef1 deletion, and hyperactive SEF1-VP16 mutants under the YPD and YPGly conditions.