Project description:Cytochalasins are a group of fungal secondary metabolites with diverse structures and bioactivities, including cytochalasin E produced by Aspergillus clavatus, which is a potent anti-angiogenic agent. Here, we report the identification and characterization of the cytochalasin gene cluster from A. clavatus NRRL 1. As a producer of cytochalasin E and K, the genome of A. clavatus was analyzed and the ?30 kb ccs gene cluster was identified based on the presence of a polyketide synthase-nonribosomal peptide synthetases (PKS-NRPS) and a putative Baeyer-Villiger monooxygenase (BVMO). Deletion of the central PKS-NRPS gene, ccsA, abolished the production of cytochalasin E and K, confirming the association between the natural products and the gene cluster. Based on bioinformatic analysis, a putative biosynthetic pathway is proposed. Furthermore, overexpression of the pathway specific regulator ccsR elevated the titer of cytochalasin E from 25mg/L to 175 mg/L. Our results not only shed light on the biosynthesis of cytochalasins, but also provided genetic tools for increasing and engineering the production.
Project description:The high demand for keratinolytic enzymes and the modest presentation of fungal keratinase diversity studies in scientific sources cause a significant interest in identifying new fungal strains of keratinase producers, isolating new enzymes and studying their properties. Four out of the 32 cultures showed a promising target activity on protein-containing agar plates-Aspergillus amstelodami A6, A. clavatus VKPM F-1593, A. ochraceus 247, and Cladosporium sphaerospermum 1779. The highest values of keratinolytic activity were demonstrated by extracellular proteins synthesized by Aspergillus clavatus VKPM F-1593 cultivated under submerged conditions on a medium containing milled chicken feathers. The enzyme complex preparation was obtained by protein precipitation from the culture liquid with ammonium sulfate, subsequent dialysis, and lyophilization. The fraction of a pure enzyme with keratinolytic activity (pI 9.3) was isolated by separating the extracellular proteins of A. clavatus VKPM F-1593 via isoelectric focusing. The studied keratinase was an alkaline subtilisin-like non-glycosylated protease active over a wide pH range with optimum keratinolysis at pH 8 and 50 °C.