Project description:This SuperSeries is composed of the following subset Series: GSE33378: Deep sequencing of small RNAs from different tissues in soybean GSE33379: Deep sequencing of the degradome cDNA library in soybean Refer to individual Series
Project description:We deep sequenced a degradome library constructed from different soybean tissues. As a result, 19,830,257 represented 5,337,590 distinct signatures were obtained. 70.98% of the signatures were assigned to one soybean cDNA sequence and 24.05% matched with two cDNA sequences. 428 potential targets of small RNAs and 25 novel miRNA families were identified in soybean. A total of 211 potential miRNA targets including 150 conserved miRNA targets and 69 soybean-specific miRNA targets were identified. The signatures distribution on soybean primary miRNAs (pri-miRNAs) showed that most of the pri-miRNAs had the characteristic pattern of Dicer processing. The TAS3 small RNAs (siRNAs) biogenesis was conserved in soybean and nine Auxin Response Factors (ARFs) were identified as the TAS3 siRNA targets. The global identification of miRNAs targets would contribute to the functional research of the miRNA in soybean. one sample, We deep sequenced a degradome library constructed from different soybean tissues.
Project description:In our study, small RNA library and degradome library were constructed from developing soybean seeds for deep sequencing. We identified 26 new miRNAs in soybean by bioinformatic analysis, and further confirmed their expression by stem-loop RT-PCR. The miRNA star sequences of 38 known miRNAs and 8 new miRNAs were also discovered, providing additional evidence for the existence of miRNAs. Through degradome sequencing, 145 and 25 genes were identified as targets of annotated miRNAs and new miRNAs, respectively. Many identified miRNA targets may perform functions in soybean seed development by GO analysis. Additionally, soybean homolog of Arabidopsis SUPPRESSOR OF GENE SLIENCING 3(AtSGS3) was detected as target of the new identified miRNA Soy_25, suggesting presence of feedback control of miRNA biogenesis
Project description:Small RNAs, including microRNAs and their targets, as well as phased secondary siRNAs, were characterized in the soybean genome by deep sequencing of small RNA libraries from a wide range of tissues. The mRNA targets of many of these small RNAs were also validated from many of the same tissues using PARE (Parallel Analysis of RNA Ends) libraries.
Project description:In our study, small RNA library and degradome library were constructed from developing soybean seeds for deep sequencing. We identified 26 new miRNAs in soybean by bioinformatic analysis, and further confirmed their expression by stem-loop RT-PCR. The miRNA star sequences of 38 known miRNAs and 8 new miRNAs were also discovered, providing additional evidence for the existence of miRNAs. Through degradome sequencing, 145 and 25 genes were identified as targets of annotated miRNAs and new miRNAs, respectively. Many identified miRNA targets may perform functions in soybean seed development by GO analysis. Additionally, soybean homolog of Arabidopsis SUPPRESSOR OF GENE SLIENCING 3(AtSGS3) was detected as target of the new identified miRNA Soy_25, suggesting presence of feedback control of miRNA biogenesis sample 1: Examination of small RNA in soybean seed sample 2: identification of miRNA targets in soybean seed
Project description:Chilling stress is a major factor limiting the yield and quality of vegetable soybean (Glycine max L.) on a global scale. Systematic identification and function analysis of miRNA under chilling stress could be helpful to clarify the molecular mechanism of chilling resistance. In the present study, two independent small RNA libraries from leaves of vegetable soybean were constructed, and sequenced with the high-throughput Illumina Solexa system. A total of 434 known miRNAs and three novel miRNAs were identified. Moreover, the expression patterns of these miRNAs have been verified by qRT-PCR analysis. Furthermore, we identified their gene targets by high-throughput degradome sequencing and validated using 5'-RACE. A total of 898 transcripts were targeted by 54 miRNA families attributed to five categories. More importantly, we identified 55 miRNAs that differentially expressed between chilling stress and the control. The targets of these miRNAs were enriched in oxidation-reduction, signal transduction, and metabolic process functional categories. The qRT-PCR confirmed that there was a negative relationship among the miRNAs and their targets under chilling stress. Our work provides comprehensive molecular evidence for the possible involvement of miRNAs in the process of chilling-stress responses in vegetable soybean.
Project description:Tropospheric ozone (O3) is a secondary air pollutant and anthropogenic greenhouse gas. Concentrations of tropospheric O3 have more than doubled since the Industrial Revolution, and are high enough to damage plant productivity. Soybean (Glycine max L. Merr.) is the worldâs most important legume crop and is sensitive to O3. Current ground-level O3 are estimated to reduce global soybean yields by 6% to 16%. In order to understand transcriptional mechanisms of yield loss in soybean, we examined the transcriptome of soybean flower and pod tissues exposed to elevated O3 using RNA-Sequencing.
Project description:Soybean (Glycine max, cv Williams82) leaf petiole explants exposed to 25 ul/l ethylene for 0 to 72 h. Explants were prepared from 21 day-old greenhouse grown plants. Leaf abscission zones (LAZ) consisted of 2 mm of tissue collected below the leaf blade. The petioles (NAZ) consisted of approximately 3 to 4 mm of petiole tissue with the AZ removed. Explants and tissue were collected in February, March and April of 2013. Tissue and RNA were collected at USDA, Beltsville, MD (Mark L Tucker, Joonyup Kim and Ronghui Yang). Library construction and sequencing was completed at Univ of Cornell, Itheca, NY using a Illumina HiSeq 2000 (James J Giovannoni and Zhangjun Fei).