Project description:rs07-05_sphingolipids-cold - sphingo-1 - The cold choc response seems to be partly triggered by Sphingolipid species. To date no gene response as been associated to sphingolipid signaling pathway in plant. Our aim is to identify among the cold induced genes the ones regulated by sphingolipids and to try to define a sphingolipid pathway specific group of genes. - 7ml of 5 days-old cells suspensions were incubated in presence of different sphingolipid pathway inhibitors, 30 min to 2 hours depending in the coumpound (all were resuspended in DMSO and control were done with DMSO). Then a 30 min cold choc was applied before cells were harvested and frozen in cold nitrogen. RNA were then extracted. FB1 and DMS were from Alexis , Myr from Cayman, TSP from matreya. 6 dye-swap - treated vs untreated comparison
Project description:rs07-05_sphingolipids-cold - sphingo-1 - The cold choc response seems to be partly triggered by Sphingolipid species. To date no gene response as been associated to sphingolipid signaling pathway in plant. Our aim is to identify among the cold induced genes the ones regulated by sphingolipids and to try to define a sphingolipid pathway specific group of genes. - 7ml of 5 days-old cells suspensions were incubated in presence of different sphingolipid pathway inhibitors, 30 min to 2 hours depending in the coumpound (all were resuspended in DMSO and control were done with DMSO). Then a 30 min cold choc was applied before cells were harvested and frozen in cold nitrogen. RNA were then extracted. FB1 and DMS were from Alexis , Myr from Cayman, TSP from matreya.
Project description:This research was undertaken to investigate the global role of inositol phosphorylceramide synthase (IPCS) activity in plants and reveal its potential as a herbicide target. The non-mammalian enzyme is a key component in the plant sphingolipid biosynthetic pathway and is shown here to be a possible herbicide target. RNA-Seq analyses demonstrated that over-expression of inositol phosphorylceramide synthase isoforms AtIPCS1, 2 or 3 in Arabidopsis thaliana resulted in the down-regulation of genes involved in plant response to pathogens. In addition, genes associated with the abiotic stress response to salinity, cold and drought were found to be similarly down-regulated. Detailed analyses of transgenic lines over-expressing AtIPCS1-3 at various levels revealed that the degree of down-regulation is specifically correlated with the level of IPCS expression. Singular enrichment analysis of these down-regulated genes showed that AtIPCS1-3 expression affects biological signaling pathways involved in plant response to biotic and abiotic stress. The up-regulation of genes involved in photosynthesis and lipid localization was also observed in the over-expressing lines.