Project description:<p>Natural products from microorganisms are important sources for drug discovery. With the development of high-throughput sequencing technology and bioinformatics, a large amount of uncharacterized biosynthetic gene clusters (BGCs) in microorganisms have been found, which show the potential for novel natural product production. 9 BGCs containing PKS and/or NRPS in <em>Streptomyces globisporus</em> C-1027 were transcriptionally low/silent under the experimental fermentation conditions, and the products of these clusters are unknown. Thus, we tried to activate these BGCs to explore cryptic products of this strain. We constructed the cluster-situated regulator overexpressing strains which contained regulator gene(s) under the control of the constitutive promoter <em>ermE</em>*p in <em>S. globisporus</em> C-1027. Overexpression of regulators in cluster 26 resulted in significant transcriptional upregulation of biosynthetic genes. With the separation and identification of products from the overexpressing strain OELuxR1R2, 3 <em>ortho</em>-methyl phenyl alkenoic acids (compounds <strong>1-3</strong>) were obtained. Gene disruption showed that compounds <strong>1</strong> and <strong>2</strong> were completely abolished in the mutant GlaEKO, but were hardly affected by deletion of the genes <em>orf3</em> or <em>echA</em> in cluster 26. The type II PKS biosynthetic pathway of chain-extended cinnamoyl compounds was deduced by bioinformatics analysis. This study showed that overexpression of the 2 adjacent cluster-situated LuxR regulator(s) is an effective strategy to connect the orphan BGC to its products.</p>
Project description:BackgroundC-1027, produced by Streptomyces globisporus C-1027, is one of the most potent antitumoral agents. The biosynthetic gene cluster of C-1027, previously cloned and sequenced, contains at least three putative regulatory genes, i.e. sgcR1, sgcR2 and sgcR3. The predicted gene products of these genes share sequence similarities to StrR, regulators of AraC/XylS family and TylR. The purpose of this study was to investigate the role of sgcR3 in C-1027 biosynthesis.ResultsOverexpression of sgcR3 in S. globisporus C-1027 resulted in a 30-40% increase in C-1027 production. Consistent with this, disruption of sgcR3 abolished C-1027 production. Complementation of the sgcR3-disrupted strain R3KO with intact sgcR3 gene could restore C-1027 production. The results from real time RT-PCR analysis in R3KO mutant and wild type strain indicated that not only transcripts of biosynthetic structural genes such as sgcA1 and sgcC4, but also putative regulatory genes, sgcR1 and sgcR2, were significantly decreased in R3KO mutant. The cross-complementation studies showed that sgcR1R2 could functionally complement sgcR3 disruption in trans. Purified N-terminal His10-tagged SgcR3 showed specific DNA-binding activity to the promoter region of sgcR1R2.ConclusionThe role of SgcR3 has been proved to be a positive regulator of C-1027 biosynthesis in S. globisporus C-1027. SgcR3 occupies a higher level than SgcR1 and SgcR2 in the regulatory hierarchy that controls C-1027 production and activates the transcription of sgcR1 and sgcR2 by binding directly to the promoter region of sgcR1R2.
Project description:Conjugation of cancer targeting peptides (CTPs) with small molecular therapeutics has emerged as a promising strategy to deliver potent (but typically nonspecific) cytotoxic agents selectively to cancer cells. Here we report the engineered production of a CTP (NGR)-containing C-1027 and evaluation of its activity against selected cancer cell lines. C-1027 is an enediyne chromoprotein produced by Streptomyces globisporus, consisting of an apo-protein (CagA) and an enediyne chromophore (C-1027). NGR is a CTP that targets CD13 in tumor vasculature. S. globisporus SB1026, a recombinant strain engineered to encode CagA with the NGR sequence fused at its C-terminus, directly produces the NGR-containing C-1027 that is equally active as the native C-1027. Our results demonstrate the feasibility to produce CTP-containing enediyne chromoproteins by metabolic pathway engineering and microbial fermentation and will inspire efforts to engineer other CTP-containing drug binding proteins for targeted delivery.
Project description:Renal cell carcinoma (RCC) is one of the most common malignant tumors of urinary system. The Food and Drug Administration (FDA) has approved everolimus for the treatment of advanced RCC, but r everolimus resistance limits its application in clinic. We here reported the DNA methyltransferase 1 (DNMT1) inhibitor SGI-1027 as an inducer of methuosis, a type of cell death form independent of apoptosis. Additionally, SGI-1027 and everolimus worked in concert to suppress the proliferation, migration, and invasion of renal cancer cells while also inducing apoptosis and GSDME-dependent pyroptosis. In vitro transplanted tumor mice models, everolimus combined with SGI-1027 played a significant inhibitory effect on the growth of renal cancer tumors with good tolerance. The objective of this study is to explore the mechanism of the synergistic effect of everolimus and SGI-1027. We demonstrated through analysis of transcriptome high-throughput sequencing data that lysosomes were strongly linked with the synergistic effect of everolimus and SGI-1027 at the transcriptional level, which provides a new strategy for everolimus resistance and the treatment of advanced RCC.