Project description:Biotic and abiotic stresses limit agricultural yields, and plants are often simultaneously exposed to multiple stresses. Combinations of stresses such as heat and drought or cold and high light intensity, have profound effects on crop performance and yeilds To analyze such responses, we initially compared transcriptome changes in ten Arabidopsis thaliana ecotypes using cold, heat, high light, salt and flagellin treatments as single stress factors or their double combinations. Arabidopsis thaliana plants of ecotypes (Col, Ler, C24, Cvi, Kas1, An1, Sha, Kyo2, Eri and Kond) were subjected to the following stress treatments: Salt, Cold, Heat, High Light (HL), Salt+Heat, Salt+HL, Cold+HL, Heat+HL, as well as FLG (Flagellin, flg22 peptide), Cold+FLG, Heat+FLG
Project description:Biotic and abiotic stresses limit agricultural yields, and plants are often simultaneously exposed to multiple stresses. Combinations of stresses such as heat and drought or cold and high light intensity, have profound effects on crop performance and yeilds To analyze such responses, we initially compared transcriptome changes in ten Arabidopsis thaliana ecotypes using cold, heat, high light, salt and flagellin treatments as single stress factors or their double combinations.
Project description:Plant responses to abiotic stresses are accompanied by massive changes in transcriptome composition. To provide a comprehensive view of stress-induced changes in the Arabidopsis thaliana transcriptome, we have used whole-genome tiling arrays to analyze the effects of salt, osmotic, cold and heat stress as well as application of the hormone abscisic acid (ABA), an important mediator of stress responses.
Project description:Arabidopsis ecotypes of Sha and Ler showed differences in tolerance to salinity stress. A previous study indicated that a premature stop codon resulting in a truncated Response to ABA and Salt 1 (RAS1) protein in Sha contributes to the increased salt tolerance relative to Ler ecotype. Sha exhibited higher germination rates and longer roots on MS plate, presumably due to the decreased ABA sensitivity in Sha. More Sha plants also survived in soil after salt treatment with relatively lower electrolyte leakage when compared to Ler. Transcriptome analysis revealed that expression levels of many genes were changed between Sha and Ler ecotypes and by salt treatments. About 500 transcripts were commonly changed by at least one salinity effect and one ecotype effect, and 171 of them were co-regulated by all four comparisons. Transcripts involved in redox, secondary metabolism, auxin metabolism, photosynthesis, cell wall, and protein synthesis were mainly down-regulated by salinity effects, while transposable element genes, microRNA and antisense sequences, histone superfamily genes, and biotic stress related genes were significantly changed by Sha ecotype effects and only slightly by salinity. Several metabolic pathways such as stress, TCA, hormone/lipid/secondary metabolism, redox, development, and GO terms involved in stress, oxidation, and defense response were enriched by both salinity and ecotype effects. Ninety-five highly inducible genes were identified as candidates of RAS1 target genes and the functions involved hormone metabolism, biotic stress, RNA, DNA synthesis, protein metabolism, cell, and microRNA metabolism. All these results indicated that the Sha ecotype was possibly preconditioned to abiotic stress relative to Ler through regulation of signaling pathways and stress responsive gene expression. These comparative transcriptomic and analytical results also confirm the complexity of ABA responses and salt stress tolerance mechanisms, and they suggest additional targets for improving tolerance. Ten days old seedlings of two Arabidopsis ecotypes, Sha and Ler, were treated with 100 mM NaCl on MS plate. Plant materials were collected for RNA extraction at 4th days after treatments.
Project description:Plants acclimate to environmental fluctuations by transitory reconfigurations the homeostatic network. Primary studies suggested that transcriptome responses to deal with fluctuations in light intensity and temperature tend to reversibility after stress removal in the model plant Arabidopsis thaliana. To gain more insight into this pattern in the context of acclimation, RNA-Seq analysis were conducted in Arabidopsis thaliana after different abiotic stress treatments consisting in high light (HL), high humidity, drought, heat, cold and combinations among factors or after recovery periods. Our transcriptome study is in line of a general pattern wherby transcriptome changes in response to adverse environments are prone to return to the basal state during the de-acclimation phase.
Project description:Transcriptional profiling of arsenic-induced toxicity and tolerance in Arabidopsis plants of different ecotypes Arsenic (As) is a toxic metalloid found ubiquitously in the environment and has widely been known as an acute poison and carcinogen. As toxicity is a major factor leading to root growth inhibition in plants. However, the molecular mechanisms of plants in response to As has not been extensively characterized. In this study, Arabidopsis ecotypes that are As-tolerant (Col-0) and -sensitive (Ws-2) were used to conduct a transcriptome analysis of the response to As (V). To begin elucidating the molecular basis of As toxicity and tolerance in Arabidopsis, seedlings of Col-0 and Ws-2 were subjected to As treatment. The root elongation rate of Col-0 was significantly higher than that of Ws-2 when exposed to As. The tolerant ecotype (Col-0) demonstrated lower accumulation of As when compared to the responses observed in the sensitive Ws-2. Subsequently, the effect of As exposure on genome-wide gene expression was examined in the two ecotypes. Comparative analysis of microarray data identified groups of genes with common and specific responses to As between Col-0 and Ws-2. The genes related to heat responses and oxidative stresses belonged to common responses, indicating conserved stress-associated changes across two ecotypes. The majority of specific responsive genes were those encoding heat shock proteins, heat shock factors, ubiquitin and transporters. The data suggested that metal transport and maintenance of protein structure may be important mechanisms for toxicity and tolerance to As. This study presents comprehensive surveys of global transcriptional regulation and identifies stress- and tolerance-associated genes in response to As.
Project description:Transcriptional profiling of arsenic-induced toxicity and tolerance in Arabidopsis plants of different ecotypes Arsenic (As) is a toxic metalloid found ubiquitously in the environment and has widely been known as an acute poison and carcinogen. As toxicity is a major factor leading to root growth inhibition in plants. However, the molecular mechanisms of plants in response to As has not been extensively characterized. In this study, Arabidopsis ecotypes that are As-tolerant (Col-0) and -sensitive (Ws-2) were used to conduct a transcriptome analysis of the response to As (V). To begin elucidating the molecular basis of As toxicity and tolerance in Arabidopsis, seedlings of Col-0 and Ws-2 were subjected to As treatment. The root elongation rate of Col-0 was significantly higher than that of Ws-2 when exposed to As. The tolerant ecotype (Col-0) demonstrated lower accumulation of As when compared to the responses observed in the sensitive Ws-2. Subsequently, the effect of As exposure on genome-wide gene expression was examined in the two ecotypes. Comparative analysis of microarray data identified groups of genes with common and specific responses to As between Col-0 and Ws-2. The genes related to heat responses and oxidative stresses belonged to common responses, indicating conserved stress-associated changes across two ecotypes. The majority of specific responsive genes were those encoding heat shock proteins, heat shock factors, ubiquitin and transporters. The data suggested that metal transport and maintenance of protein structure may be important mechanisms for toxicity and tolerance to As. This study presents comprehensive surveys of global transcriptional regulation and identifies stress- and tolerance-associated genes in response to As. Comparison of Arabidopsis ecotype Col-0 and Ws-2 in response to As with the Affymetrix GeneChip were performed by the Affymetrix Gene Expression Service Lab (http://ipmb.sinica.edu.tw/affy/), supported by Academia Sinica, Taiwan
Project description:Arabidopsis ecotypes of Sha and Ler showed differences in tolerance to salinity stress. A previous study indicated that a premature stop codon resulting in a truncated Response to ABA and Salt 1 (RAS1) protein in Sha contributes to the increased salt tolerance relative to Ler ecotype. Sha exhibited higher germination rates and longer roots on MS plate, presumably due to the decreased ABA sensitivity in Sha. More Sha plants also survived in soil after salt treatment with relatively lower electrolyte leakage when compared to Ler. Transcriptome analysis revealed that expression levels of many genes were changed between Sha and Ler ecotypes and by salt treatments. About 500 transcripts were commonly changed by at least one salinity effect and one ecotype effect, and 171 of them were co-regulated by all four comparisons. Transcripts involved in redox, secondary metabolism, auxin metabolism, photosynthesis, cell wall, and protein synthesis were mainly down-regulated by salinity effects, while transposable element genes, microRNA and antisense sequences, histone superfamily genes, and biotic stress related genes were significantly changed by Sha ecotype effects and only slightly by salinity. Several metabolic pathways such as stress, TCA, hormone/lipid/secondary metabolism, redox, development, and GO terms involved in stress, oxidation, and defense response were enriched by both salinity and ecotype effects. Ninety-five highly inducible genes were identified as candidates of RAS1 target genes and the functions involved hormone metabolism, biotic stress, RNA, DNA synthesis, protein metabolism, cell, and microRNA metabolism. All these results indicated that the Sha ecotype was possibly preconditioned to abiotic stress relative to Ler through regulation of signaling pathways and stress responsive gene expression. These comparative transcriptomic and analytical results also confirm the complexity of ABA responses and salt stress tolerance mechanisms, and they suggest additional targets for improving tolerance.
Project description:Belonging to the Carmovirus family, Turnip crinkle virus (TCV) is a positive-strand RNA virus that can infect Arabidopsis. Most Arabidopsis ecotypes are highly susceptible to TCV, except for the TCV resistant line Di-17 derived from ecotype Dijon. Previous studies showed that many of the stress related genes have changed significantly after TCV infection. Besides the virus-triggered genes, small RNAs also play critical roles in plant defense by triggering either transcriptional and/or post-transcriptional gene silencing. In this study, TCV-infected wildtype Arabidopsis thaliana and dcl1-9 mutant plants were subjected to transcriptome and small RNA analysis to investigate the role of DCL1 in virus defense network.