Project description:OBJECTIVE: Previous expression microarray analyses have failed to take into consideration the genetic heterogeneity and complex patterns of ERG gene alteration frequently found in cancerous prostates. The objective of this study is for the first time, to integrate the mapping of ERG gene alterations with the collection of expression microarray data. PATIENTS AND METHODS: We have deterimined genome-wide expression levels with Affymetrix GeneChip Human Exon 1.0 ST arrays using RNA prepared from 35 specimens of prostate cancer from 28 prostates. RESULTS: The expression profiles exhibit clustering, in unsupervised hierarchical analyses, into two distinct prostate cancer categories, with one group strongly associated with indicators of poor clinical outcome. The two categories are not tightly linked to ERG gene status. Through analysis of the data we identify a subgoup of cancers lacking ERG gene rearrangements that exhibit an outlier pattern of SPINK1 mRNA expression. We also show that a major distinction between ERG gene rearranged and non-rearranged cancers involves the levels of expression of genes linked to exposure to beta-estradiol, and to retinoic acid. CONCLUSIONS: Our studies show that expression profiling of prostate cancer samples containing single patterns of ERG alterations can provide novel insights into the mechanism of prostate cancer development, and support the view that factors other than ERG gene status are the major determinants of poor clinical outcome. Keywords: disease state analysis
Project description:Over the last two decades, tumor-derived RNA expression signatures have been developed for the two most commonly diagnosed tumors worldwide, namely prostate and breast tumors, in order to improve both outcome prediction and treatment decision-making. In this context, molecular signatures gained by main components of the tumor microenvironment, such as cancer-associated fibroblasts (CAFs), have been explored as prognostic and therapeutic tools. Nevertheless, a deeper understanding of the significance of CAFs-related gene signatures in breast and prostate cancers still remains to be disclosed. RNA sequencing technology (RNA-seq) was employed to profile and compare the transcriptome of CAFs isolated from patients affected by breast and prostate tumors. The differentially expressed genes (DEGs) characterizing breast and prostate CAFs were intersected with data from public datasets derived from bulk RNA-seq profiles of breast and prostate tumor patients. Pathway enrichment analyses allowed us to appreciate the biological significance of the DEGs. K-means clustering was applied to construct CAFs-related gene signatures specific for breast and prostate cancer and to stratify independent cohorts of patients into high and low gene expression clusters. Kaplan-Meier survival curves and log-rank tests were employed to predict differences in the outcome parameters of the clusters of patients. Decision-tree analysis was used to validate the clustering results and boosting calculations were then employed to improve the results obtained by the decision-tree algorithm. Data obtained in breast CAFs allowed us to assess a signature that includes 8 genes (ITGA11, THBS1, FN1, EMP1, ITGA2, FYN, SPP1, and EMP2) belonging to pro-metastatic signaling routes, such as the focal adhesion pathway. Survival analyses indicated that the cluster of breast cancer patients showing a high expression of the aforementioned genes displays worse clinical outcomes. Next, we identified a prostate CAFs-related signature that includes 11 genes (IL13RA2, GDF7, IL33, CXCL1, TNFRSF19, CXCL6, LIFR, CXCL5, IL7, TSLP, and TNFSF15) associated with immune responses. A low expression of these genes was predictive of poor survival rates in prostate cancer patients. The results obtained were significantly validated through a two-step approach, based on unsupervised (clustering) and supervised (classification) learning techniques, showing a high prediction accuracy (≥ 90%) in independent RNA-seq cohorts. We identified a huge heterogeneity in the transcriptional profile of CAFs derived from breast and prostate tumors. Of note, the two novel CAFs-related gene signatures might be considered as reliable prognostic indicators and valuable biomarkers for a better management of breast and prostate cancer patients.
Project description:Background Understanding the heterogeneous genotypes and phenotypes of prostate cancer is fundamental to improving the way we treat this disease. As yet, there are no validated descriptions of prostate cancer subgroups derived from integrated genomics linked with clinical outcome. Methods In a study of 482 tumor, benign and germline samples from 259 men with primary prostate cancer, we used integrative analysis of copy number alterations (CNA) and array transcriptomics to identify genomic loci that affect expression levels of mRNA in an expression quantitative trait loci (eQTL) approach, to stratify patients into subgroups that we then associated with future clinical behavior, and compared with either CNA or transcriptomics alone. Findings We identified five separate patient subgroups with distinct genomic alterations and expression profiles based on 100 discriminating genes in our separate discovery and validation sets of 125 and 99 men. These subgroups were able to consistently predict biochemical relapse (p=0.0017 and p=0.016 respectively) and were further validated in a third cohort with long-term follow-up (p=0.027). We show the relative contributions of gene expression and copy number data on phenotype, and demonstrate the improved power gained from integrative analyses. We confirm alterations in six genes previously associated with prostate cancer (MAP3K7, MELK, RCBTB2, ELAC2, TPD52, ZBTB4) in prostate cancer, and also identify 94 genes not previously linked to prostate cancer progression that would not have been detected using either transcript or copy number data alone. We confirm a number of previously published molecular changes associated with high risk disease, including MYC amplification, and NKX3-1, RB1 and PTEN deletions, as well as over-expression of PCA3 and AMACR, and loss of MSMB in tumor tissue. A subset of the 100 genes outperforms established clinical predictors of poor prognosis (PSA, Gleason score), as well as previously published gene signatures (p=0•0001). We further show how our molecular profiles can be used for the early detection of aggressive cases in a clinical setting, and inform treatment decisions. Interpretation For the first time this study demonstrates the importance of integrated genomic analyses incorporating both benign and tumor tissue data in identifying molecular alterations leading to generation of robust gene sets that are predictive of clinical outcome in independent patient cohorts. A total of 482 samples from 289 men with prostate cancer from two cohorts were included in this study. The discovery cohort comprised 125 tumor samples from radical prostatectomy (RP) with 118 matched benign samples, and 85 matched blood samples. An additional 4 benign samples from men undergoing Holmium laser enucleation of the prostate (HoLEP) and 16 radical prostatectomy samples from men with castrate-resistant prostate cancer, with 13 matched blood samples were also included. These were assayed on several platforms, including Illumina HT12v4 gene expression arrays, Illumina OMNI2.5M genotyping arrays and Affymetrix SNP6 genotyping arrays. The validation cohort comprised 103 tumor tissue samples from men with prostate cancer, with 99 matched benign tissue samples and 103 matched blood samples. This datasheet describes samples in the DISCOVERY COHORT only, with complete, Affymetrix GenomeWideSNP_6 data for 89 tumor samples, 50 matched blood samples and 41 matched benign samples.
Project description:Etiologically linked to HPV infection, malignancies of the anal canal have substantially increased in incidence over the last 20 years. Although most anal squamous cell carcinomas (SCC) respond well to chemoradiotherapy, for undetermined reasons, a subgroup of patients experience a poor outcome. Despite cumulative efforts for discovering independent predictors for overall survival, both nodal status and tumor size are still the only reliable factors predicting patient outcome. In the present study, we correlated both proteomic signatures and clinicopathological features of neoplastic lesions arising from two distinct portions of the anal canal: the lower part (squamous zone) and the more proximal anal transitional zone. Although microdissected cancer cells appeared indistinguishable by morphology (squamous phenotype), unsupervised clustering analysis of the whole proteome significantly highlighted the heterogeneity that exists within anal canal tumors. More importantly, two region-specific subtypes of SCC were revealed. The expression profile (sensitivity/specificity) of several selected biomarkers (keratin filaments) further confirmed the subclassification of anal (pre)cancers based on their cellular origin. Less commonly detected compared to their counterparts located in the squamous mucosa, SCC originating in the transitional zone displayed more frequently a poor or basaloid differentiation and were significantly correlated with reduced disease-free and overall survivals. Taken together, we present for the first time direct evidence that anal canal SCC comprises two distinct entities with different cells of origin, proteomic signatures and survival rates. This study forms the basis for a novel dualistic classification of anal carcinoma with implications for management, outcome expectations and possibly therapeutic approaches.
Project description:We performed Chip-Seq analyses of several DNA binding transcription factors predicted to function as "master transcriptional regulators" (MTRs) of breast cancer prognostic gene signatures in primary human mammary epithelial cells (HMECs). These analyses demonstrated that these factors frequently co–bind the promoters of genes, the expression of which is associated with a proliferative phenotype and poor patient outcome. These data suggest that these predicted MTRs do indeed drive the expression of gene signatures associated with poor patient outcome in breast cancer.
Project description:Background Understanding the heterogeneous genotypes and phenotypes of prostate cancer is fundamental to improving the way we treat this disease. As yet, there are no validated descriptions of prostate cancer subgroups derived from integrated genomics linked with clinical outcome. Methods In a study of 482 tumour, benign and germline samples from 259 men with primary prostate cancer, we used integrative analysis of copy number alterations (CNA) and array transcriptomics to identify genomic loci that affect expression levels of mRNA in an expression quantitative trait loci (eQTL) approach, to stratify patients into subgroups that we then associated with future clinical behavior, and compared with either CNA or transcriptomics alone. Findings We identified five separate patient subgroups with distinct genomic alterations and expression profiles based on 100 discriminating genes in our separate discovery and validation sets of 125 and 99 men. These subgroups were able to consistently predict biochemical relapse (p=0.0017 and p=0.016 respectively) and were further validated in a third cohort with long-term follow-up (p=0.027). We show the relative contributions of gene expression and copy number data on phenotype, and demonstrate the improved power gained from integrative analyses. We confirm alterations in six genes previously associated with prostate cancer (MAP3K7, MELK, RCBTB2, ELAC2, TPD52, ZBTB4) in prostate cancer, and also identify 94 genes not previously linked to prostate cancer progression that would not have been detected using either transcript or copy number data alone. We confirm a number of previously published molecular changes associated with high risk disease, including MYC amplification, and NKX3-1, RB1 and PTEN deletions, as well as over-expression of PCA3 and AMACR, and loss of MSMB in tumour tissue. A subset of the 100 genes outperforms established clinical predictors of poor prognosis (PSA, Gleason score), as well as previously published gene signatures (p=0•0001). We further show how our molecular profiles can be used for the early detection of aggressive cases in a clinical setting, and inform treatment decisions. Interpretation For the first time this study demonstrates the importance of integrated genomic analyses incorporating both benign and tumour tissue data in identifying molecular alterations leading to generation of robust gene sets that are predictive of clinical outcome in independent patient cohorts. A total of 482 samples from 289 men with prostate cancer from two cohorts were included in this study. The discovery cohort comprised 125 tumour samples from radical prostatectomy (RP) with 118 matched benign samples, and 85 matched blood samples. An additional 4 benign samples from men undergoing Holmium laser enucleation of the prostate (HoLEP) and 16 radical prostatectomy samples from men with castrate-resistant prostate cancer, with 13 matched blood samples were also included. These were assayed on several platforms, including Illumina HT12v4 gene expression arrays, Illumina OMNI2.5M genotyping arrays and Affymetrix SNP6 genotyping arrays. The validation cohort comprised 103 tumour tissue samples from men with prostate cancer, with 99 matched benign tissue samples and 103 matched blood samples. This datasheet describes samples in the VALIDATION COHORT only, with complete, QCd Illumina HT12v4 data for 94 RP samples. Extensive clinical metadata is available in the associated publication Ross-Adams et al. (2015, Suppl. Table 2)
Project description:Background Understanding the heterogeneous genotypes and phenotypes of prostate cancer is fundamental to improving the way we treat this disease. As yet, there are no validated descriptions of prostate cancer subgroups derived from integrated genomics linked with clinical outcome. Methods In a study of 482 tumour, benign and germline samples from 259 men with primary prostate cancer, we used integrative analysis of copy number alterations (CNA) and array transcriptomics to identify genomic loci that affect expression levels of mRNA in an expression quantitative trait loci (eQTL) approach, to stratify patients into subgroups that we then associated with future clinical behavior, and compared with either CNA or transcriptomics alone. Findings We identified five separate patient subgroups with distinct genomic alterations and expression profiles based on 100 discriminating genes in our separate discovery and validation sets of 125 and 99 men. These subgroups were able to consistently predict biochemical relapse (p=0.0017 and p=0.016 respectively) and were further validated in a third cohort with long-term follow-up (p=0.027). We show the relative contributions of gene expression and copy number data on phenotype, and demonstrate the improved power gained from integrative analyses. We confirm alterations in six genes previously associated with prostate cancer (MAP3K7, MELK, RCBTB2, ELAC2, TPD52, ZBTB4) in prostate cancer, and also identify 94 genes not previously linked to prostate cancer progression that would not have been detected using either transcript or copy number data alone. We confirm a number of previously published molecular changes associated with high risk disease, including MYC amplification, and NKX3-1, RB1 and PTEN deletions, as well as over-expression of PCA3 and AMACR, and loss of MSMB in tumour tissue. A subset of the 100 genes outperforms established clinical predictors of poor prognosis (PSA, Gleason score), as well as previously published gene signatures (p=0•0001). We further show how our molecular profiles can be used for the early detection of aggressive cases in a clinical setting, and inform treatment decisions. Interpretation For the first time this study demonstrates the importance of integrated genomic analyses incorporating both benign and tumour tissue data in identifying molecular alterations leading to generation of robust gene sets that are predictive of clinical outcome in independent patient cohorts. A total of 482 samples from 289 men with prostate cancer from two cohorts were included in this study. The discovery cohort comprised 125 tumour samples from radical prostatectomy (RP) with 118 matched benign samples, and 85 matched blood samples. An additional 4 benign samples from men undergoing Holmium laser enucleation of the prostate (HoLEP) and 16 radical prostatectomy samples from men with castrate-resistant prostate cancer, with 13 matched blood samples were also included. These were assayed on several platforms, including Illumina HT12v4 gene expression arrays, Illumina OMNI2.5M genotyping arrays and Affymetrix SNP6 genotyping arrays. The validation cohort comprised 103 tumour tissue samples from men with prostate cancer, with 99 matched benign tissue samples and 103 matched blood samples. This datasheet describes samples in the DISCOVERY COHORT only, with complete, QCd Illumina HT12v4 data for 13 CRPC samples, 113 tumour samples and 73 matched benign samples. Extensive clinical metadata is available in the associated publication Ross-Adams et al. (2015, Suppl. Table 2)
Project description:Background Understanding the heterogeneous genotypes and phenotypes of prostate cancer is fundamental to improving the way we treat this disease. As yet, there are no validated descriptions of prostate cancer subgroups derived from integrated genomics linked with clinical outcome. Methods In a study of 482 tumour, benign and germline samples from 259 men with primary prostate cancer, we used integrative analysis of copy number alterations (CNA) and array transcriptomics to identify genomic loci that affect expression levels of mRNA in an expression quantitative trait loci (eQTL) approach, to stratify patients into subgroups that we then associated with future clinical behavior, and compared with either CNA or transcriptomics alone. Findings We identified five separate patient subgroups with distinct genomic alterations and expression profiles based on 100 discriminating genes in our separate discovery and validation sets of 125 and 99 men. These subgroups were able to consistently predict biochemical relapse (p=0.0017 and p=0.016 respectively) and were further validated in a third cohort with long-term follow-up (p=0.027). We show the relative contributions of gene expression and copy number data on phenotype, and demonstrate the improved power gained from integrative analyses. We confirm alterations in six genes previously associated with prostate cancer (MAP3K7, MELK, RCBTB2, ELAC2, TPD52, ZBTB4) in prostate cancer, and also identify 94 genes not previously linked to prostate cancer progression that would not have been detected using either transcript or copy number data alone. We confirm a number of previously published molecular changes associated with high risk disease, including MYC amplification, and NKX3-1, RB1 and PTEN deletions, as well as over-expression of PCA3 and AMACR, and loss of MSMB in tumour tissue. A subset of the 100 genes outperforms established clinical predictors of poor prognosis (PSA, Gleason score), as well as previously published gene signatures (p=0•0001). We further show how our molecular profiles can be used for the early detection of aggressive cases in a clinical setting, and inform treatment decisions. Interpretation For the first time this study demonstrates the importance of integrated genomic analyses incorporating both benign and tumour tissue data in identifying molecular alterations leading to generation of robust gene sets that are predictive of clinical outcome in independent patient cohorts. A total of 482 samples from 289 men with prostate cancer from two cohorts were included in this study. The discovery cohort comprised 125 tumour samples from radical prostatectomy (RP) with 118 matched benign samples, and 85 matched blood samples. An additional 4 benign samples from men undergoing Holmium laser enucleation of the prostate (HoLEP) and 16 radical prostatectomy samples from men with castrate-resistant prostate cancer, with 13 matched blood samples were also included. These were assayed on several platforms, including Illumina HT12v4 gene expression arrays, Illumina OMNI2.5M genotyping arrays and Affymetrix SNP6 genotyping arrays. The validation cohort comprised 103 tumour tissue samples from men with prostate cancer, with 99 matched benign tissue samples and 103 matched blood samples. This datasheet describes samples in the DISCOVERY COHORT only, with complete, QCd Illumina HT12v4 data for 13 CRPC samples, 113 tumour samples and 73 matched benign samples.
Project description:Background Understanding the heterogeneous genotypes and phenotypes of prostate cancer is fundamental to improving the way we treat this disease. As yet, there are no validated descriptions of prostate cancer subgroups derived from integrated genomics linked with clinical outcome. Methods In a study of 482 tumour, benign and germline samples from 259 men with primary prostate cancer, we used integrative analysis of copy number alterations (CNA) and array transcriptomics to identify genomic loci that affect expression levels of mRNA in an expression quantitative trait loci (eQTL) approach, to stratify patients into subgroups that we then associated with future clinical behavior, and compared with either CNA or transcriptomics alone. Findings We identified five separate patient subgroups with distinct genomic alterations and expression profiles based on 100 discriminating genes in our separate discovery and validation sets of 125 and 99 men. These subgroups were able to consistently predict biochemical relapse (p=0.0017 and p=0.016 respectively) and were further validated in a third cohort with long-term follow-up (p=0.027). We show the relative contributions of gene expression and copy number data on phenotype, and demonstrate the improved power gained from integrative analyses. We confirm alterations in six genes previously associated with prostate cancer (MAP3K7, MELK, RCBTB2, ELAC2, TPD52, ZBTB4) in prostate cancer, and also identify 94 genes not previously linked to prostate cancer progression that would not have been detected using either transcript or copy number data alone. We confirm a number of previously published molecular changes associated with high risk disease, including MYC amplification, and NKX3-1, RB1 and PTEN deletions, as well as over-expression of PCA3 and AMACR, and loss of MSMB in tumour tissue. A subset of the 100 genes outperforms established clinical predictors of poor prognosis (PSA, Gleason score), as well as previously published gene signatures (p=0•0001). We further show how our molecular profiles can be used for the early detection of aggressive cases in a clinical setting, and inform treatment decisions. Interpretation For the first time this study demonstrates the importance of integrated genomic analyses incorporating both benign and tumour tissue data in identifying molecular alterations leading to generation of robust gene sets that are predictive of clinical outcome in independent patient cohorts. A total of 482 samples from 289 men with prostate cancer from two cohorts were included in this study. The discovery cohort comprised 125 tumour samples from radical prostatectomy (RP) with 118 matched benign samples, and 85 matched blood samples. An additional 4 benign samples from men undergoing Holmium laser enucleation of the prostate (HoLEP) and 16 radical prostatectomy samples from men with castrate-resistant prostate cancer, with 13 matched blood samples were also included. These were assayed on several platforms, including Illumina HT12v4 gene expression arrays, Illumina OMNI2.5M genotyping arrays and Affymetrix SNP6 genotyping arrays. The validation cohort comprised 103 tumour tissue samples from men with prostate cancer, with 99 matched benign tissue samples and 103 matched blood samples. This datasheet describes samples in the DISCOVERY COHORT only, with complete, QCd Illumina HT12v4 data for 13 CRPC samples, 113 tumour samples and 73 matched benign samples.
Project description:Background Understanding the heterogeneous genotypes and phenotypes of prostate cancer is fundamental to improving the way we treat this disease. As yet, there are no validated descriptions of prostate cancer subgroups derived from integrated genomics linked with clinical outcome. Methods In a study of 482 tumour, benign and germline samples from 259 men with primary prostate cancer, we used integrative analysis of copy number alterations (CNA) and array transcriptomics to identify genomic loci that affect expression levels of mRNA in an expression quantitative trait loci (eQTL) approach, to stratify patients into subgroups that we then associated with future clinical behavior, and compared with either CNA or transcriptomics alone. Findings We identified five separate patient subgroups with distinct genomic alterations and expression profiles based on 100 discriminating genes in our separate discovery and validation sets of 125 and 99 men. These subgroups were able to consistently predict biochemical relapse (p=0.0017 and p=0.016 respectively) and were further validated in a third cohort with long-term follow-up (p=0.027). We show the relative contributions of gene expression and copy number data on phenotype, and demonstrate the improved power gained from integrative analyses. We confirm alterations in six genes previously associated with prostate cancer (MAP3K7, MELK, RCBTB2, ELAC2, TPD52, ZBTB4) in prostate cancer, and also identify 94 genes not previously linked to prostate cancer progression that would not have been detected using either transcript or copy number data alone. We confirm a number of previously published molecular changes associated with high risk disease, including MYC amplification, and NKX3-1, RB1 and PTEN deletions, as well as over-expression of PCA3 and AMACR, and loss of MSMB in tumour tissue. A subset of the 100 genes outperforms established clinical predictors of poor prognosis (PSA, Gleason score), as well as previously published gene signatures (p=0•0001). We further show how our molecular profiles can be used for the early detection of aggressive cases in a clinical setting, and inform treatment decisions. Interpretation For the first time this study demonstrates the importance of integrated genomic analyses incorporating both benign and tumour tissue data in identifying molecular alterations leading to generation of robust gene sets that are predictive of clinical outcome in independent patient cohorts. A total of 482 samples from 289 men with prostate cancer from two cohorts were included in this study. The discovery cohort comprised 125 tumour samples from radical prostatectomy (RP) with 118 matched benign samples, and 85 matched blood samples. An additional 4 benign samples from men undergoing Holmium laser enucleation of the prostate (HoLEP) and 16 radical prostatectomy samples from men with castrate-resistant prostate cancer, with 13 matched blood samples were also included. These were assayed on several platforms, including Illumina HT12v4 gene expression arrays, Illumina OMNI2.5M genotyping arrays and Affymetrix SNP6 genotyping arrays. The validation cohort comprised 103 tumour tissue samples from men with prostate cancer, with 99 matched benign tissue samples and 103 matched blood samples. This datasheet describes samples in the DISCOVERY COHORT only, with complete, QCd Illumina HT12v4 data for 13 CRPC samples, 113 tumour samples and 73 matched benign samples.