Project description:This SuperSeries is composed of the following subset Series: GSE37200: Gene expression profiling of Barrett’s esophageal tissues and esophageal adenocarcinoma specimens GSE37201: Gene expression profiling of esophageal adenocarcinoma Refer to individual Series
Project description:The aim of this study is to generate and validate biomarkers to stratify patients with Barrett’s esophagus in terms of risk for developing cancer. We studied gene expression profiling in 69 frozen specimens, consisting of esophageal squamous epithelium from 19 healthy subjects, 20 specimens from patients with Barrett’s esophagus and 21 cases of esophageal adenocarcinoma, 9 cased of esophageal squamous cell carcinoma by whole genome microarray analysis. Laser capture microdissection technique was applied to procure cells from defined regions of Barrett’s esophagus metaplasia and esophageal adenocarcinoma. Microarray results were validated by quantitative real-time polymerase chain reaction (qRT-PCR) in an independent cohort consisting of 42 cases. Furthermore, immunohistochemistry was performed using antibodies to two selected target molecules on a third independent cohort of 36 specimens, consisting of 36 cases. A total of 1176 genes were associated significantly with esophageal adenocarcinoma. The expression pattern of a 4 gene signature with the highest discriminant score based on linear discriminant analysis (GeneSpring GX10.2), was identified and validated by qRT-PCR in independent cohort. Gene expression profiling of 20 specimens of Barrett's esophagus patients, 21 specimens of adenocarcinoma patients and 19 biopsies from patients with normal esophageal squamous epithelium, 9 specimens of squamous cell carcinoma were studied.
Project description:The aim of this study is to generate and validate biomarkers to stratify patients with Barrett’s esophagus in terms of risk for developing cancer. We studied gene expression profiling in 69 frozen specimens, consisting of esophageal squamous epithelium from 19 healthy subjects, 20 specimens from patients with Barrett’s esophagus and 21 cases of esophageal adenocarcinoma, 9 cased of esophageal squamous cell carcinoma by whole genome microarray analysis. Laser capture microdissection technique was applied to procure cells from defined regions of Barrett’s esophagus metaplasia and esophageal adenocarcinoma. Microarray results were validated by quantitative real-time polymerase chain reaction (qRT-PCR) in an independent cohort consisting of 42 cases. Furthermore, immunohistochemistry was performed using antibodies to two selected target molecules on a third independent cohort of 36 specimens, consisting of 36 cases. A total of 1176 genes were associated significantly with esophageal adenocarcinoma. The expression pattern of a 4 gene signature with the highest discriminant score based on linear discriminant analysis (GeneSpring GX10.2), was identified and validated by qRT-PCR in independent cohort.
Project description:Barrett’s esophagus confers significant risk of esophageal adenocarcinoma. We have established the cloning of patient-matched stem cells of Barrett’s, gastric, and esophageal epithelium. Transplantation of transformed Barrett’s stem cells yielded tumors with hallmarks of esophageal adenocarcinoma, whereas transformed esophageal stem cells produced squamous cell carcinomas. These findings define a stem cell target in a precancerous lesion for preemptive therapies.
Project description:The involvment of bile acids such as deoxycholic acid (DCA) in gastro-esophageal reflux disease and subsequent Barrett’s metaplsia has been postulated. This study examines gene expression induced by exposure to DCA in esophageal cells and may be utilised in cross-comparisons with data derived from gene expression studies of Barrett’s esophagus and associated adenocarcinoma.
Project description:The involvment of bile acids such as deoxycholic acid (DCA) in gastro-esophageal reflux disease and subsequent Barrett’s metaplsia has been postulated. This study examines gene expression induced by exposure to DCA in esophageal cells and may be utilised in cross-comparisions with data derived from gene expression studies of Barrett’s esophagus and associated adenocarcinoma. Additionally this study may be used to assess divergence in response to bile acids by comparisons with similar study performed in SKGT4 barrett''s assocaited adenocarcinoma cell line.