Project description:Primary pre-B acute lymphoblastic (ALL) cells do not proliferate long-term ex vivo without the presence of stromal support. We developed and use an ex vivo co-culture model, consisting of mouse leukemic pre-B Bcr/Abl-expressing ALL cells grown with mitotically inactivated mouse embryonic fibroblasts (MEFs). This system provides a generic type of environmentally-mediated protection to the ALL cells, because when the ALL cells are treated with a moderate dose of a therapeutic drug, drug-resistant ALL cells can be recovered after a 1-2 week period of culture. Some of the factors produced by stromal cells that provide protection to ALL cells have been identified. However, it is unclear if the presence of drug-treated ALL cells affects the stromal fibroblasts. The current study was initiated to examine this using expression profiling on the irradiated MEFs. We isolated RNA from irradiated wild-type MEFs after a 9-day culture period. MEFs had either been exposed to DMSO, to nilotinib, a drug that is not expected to affect them, or to ALL cells treated with DMSO or nilotinib. MEFs and ALL cells were physically separated by a Transwell membrane of a pore size that did not allow the ALL cells to migrate towards the MEFs, but allowed the exchange of diffusible molecules.
Project description:Primary pre-B acute lymphoblastic (ALL) cells do not proliferate long-term ex vivo without the presence of stromal support. We developed and use an ex vivo co-culture model, consisting of mouse leukemic pre-B Bcr/Abl-expressing ALL cells grown with mitotically inactivated mouse embryonic fibroblasts (MEFs). This system provides a generic type of environmentally-mediated protection to the ALL cells, because when the ALL cells are treated with a moderate dose of a therapeutic drug, drug-resistant ALL cells can be recovered after a 1-2 week period of culture. Some of the factors produced by stromal cells that provide protection to ALL cells have been identified. However, it is unclear if the presence of drug-treated ALL cells affects the stromal fibroblasts. The current study was initiated to examine this using expression profiling on the irradiated MEFs.
Project description:Background In the ongoing battle against BCR-ABL+ leukemia, despite significant advances with tyrosine kinase inhibitors (TKIs), the persistent challenges of drug resistance and the enduring presence of leukemic stem cells (LSCs) remain formidable barriers to achieving a cure. Methods In this study, we demonstrated that Disulfiram (DSF) induces ferroptosis to synergize with TKIs in inhibiting BCR-ABL+ cells, particularly targeting resistant cells and LSCs, using cell models, mouse models, and primary cells from patients. We elucidated the mechanism by which DSF promotes GPX4 degradation to induce ferroptosis through immunofluorescence, co-immunoprecipitation (CO-IP), RNA sequencing, lipid peroxidation assays, and rescue experiments. Results Here, we present compelling evidence elucidating the sensitivity of DSF, an FDA-approved drug for alcohol dependence, towards BCR-ABL+ cells. Our findings underscore DSF's ability to selectively induce a potent cytotoxic effect on BCR-ABL+ cell lines and effectively inhibit primary BCR-ABL+ leukemia cells. Crucially, the combined treatment of DSF with TKIs selectively eradicates TKI-insensitive stem cells and resistant cells. Of particular note is DSF's capacity to disrupt GPX4 stability, elevate the labile iron pool, and intensify lipid peroxidation, ultimately leading to ferroptotic cell death. Our investigation shows that BCR-ABL expression induces alterations in cellular iron metabolism and increases GPX4 expression. Additionally, we demonstrate the indispensability of GPX4 for LSC development and the initiation/maintenance of BCR-ABL+ leukemia. Mechanical analysis further elucidates DSF's ability to circumvent resistance by reducing GPX4 levels through the disruption of its binding with HSPA8, thereby promoting GPX4 ubiquitination and subsequent degradation. Furthermore, the combined treatment of DSF with TKIs effectively targets both BCR-ABL+ blast cells and drug-insensitive LSCs, conferring a significant survival advantage in mouse models. Conclusion In summary, the dual inhibition of GPX4 and BCR-ABL presents a promising therapeutic strategy to synergistically target blast cells and drug-insensitive LSCs in patients, offering potential avenues for advancing leukemia treatment.
Project description:Gene expression profile variation between 4 BCR-Abl transduced cell lines: <br> 1-Mouse DA1-3b cell line as reference, <br> 2-DR1 imatinib resistant clone with E255K BCR-abl mutation<br> 3-DRBMSR 2 dasatinib resistant clone with E255K and T315I BCR-Abl mutation.<br> 4-DRBMSR 7 dasatinib resistant clone with E255K and T315I and V299L BCR-Abl mutation<br> <br> BCR-ABL is an oncogenic tyrosine kinase involved in the development of chronic myelogenous leukaemia (CML).
Project description:We previously demonstrated that Alox5 deficiency impairs the function of LSCs and prevents the initiation of BCR-ABL-induced CML. To identify the pathways in which Alox5 gene regulates function of LSCs, we performed a comparative DNA microarray analysis using total RNA isolated from non-BCR-ABL-expressing Lin-Sca-1+c-Kit+, BCR-ABL-expressing wild type LSCs and BCR-ABL-expressing Alox5-/- LSCs. The result was validated by quantitative real-time PCR analysis of non-BCR-ABL-expressing Lin-Sca-1+c-Kit+, BCR-ABL-expressing wild type LSCs and BCR-ABL-expressing Alox5-/- LSCs. We have shown that Alox5 is a critical regulator of leukemia stem cells (LSCs) in a BCR-ABL-induced chronic myeloid leukemia (CML) mouse model, and we hypothesize that the Alox5 pathway represents a major molecular network that regulates LSC function. Therefore, we sought to further dissect this pathway by comparing the gene expression profiles of wild type and Alox5-/- LSCs derived from our mouse model for BCR-ABL-induced CML. DNA microarray analysis revealed a small group of candidate genes that exhibited changes in the levels of transcription in the absence of Alox5 expression. In particular, we noted that the expression of the Msr1 gene was up-regulated in Alox5-/- LSCs, suggesting that Msr1 might suppress the proliferation of LSCs. Using our CML mouse model, we show that Msr1 is down-regulated by BCR-ABL and this down-regulation is partially restored by Alox5 deletion, and that Msr1 deletion causes acceleration of CML development. Moreover, Msr1 deletion markedly increases LSC function through its effects on cell cycle progression and apoptosis. We also show that Msr1 affects CML development by regulating the PI3K-AKT pathway and ?-Catenin. Together, these results demonstrate that Msr1 suppresses LSCs and CML development. The enhancement of Msr1 function may be of significance in the development of novel therapeutic strategies targeting CML. To identify genes that are regulated by BCR-ABL in LSCs and LSCs without Alox5 gene, we compared the gene profile between wild type(WT) LSCs or Alox5-/- LSCs.
Project description:MiR-142 is dynamically expressed and plays a regulatory role in hematopoiesis. Based on the simple observation that miR-142 levels are significantly lower in CD34+CD38- cells from blast crisis (BC) chronic myeloid leukemia (CML). CML patients compared with chronic phase (CP) CML patients (p=0.002), we hypothesized that miR-142 deficit plays a role in BC transformation. To test this hypothesis, we generated a miR-142 KO BCR-ABL (i.e., miR-142−/−BCR-ABL) mouse by crossing a miR-142−/− mouse with a miR-142+/+BCR-ABL mouse. While the miR-142+/+BCR-ABL mice developed and died of CP CML, the miR-142−/−BCR-ABL mice developed a BC-like phenotype in the absence of any other acquired gene mutations and died significantly sooner than miR-142+/+BCR-ABL CP controls (p=0.001). Leukemic stem cell (LSC)-enriched Lineage-Sca-1+c-Kit+ cells (LSKs) from diseased miR-142−/−BCR-ABL mice transplanted into congenic recipients, recapitulated the BC features thereby suggesting stable transformation of CP-LSCs into BC-LSCs in the miR-142 KO CML mouse. Single cell (sc) RNA-seq profiling showed that miR-142 deficit changed the cellular landscape of the miR-142−/−BCR-ABL LSKs compared with miR-142+/+BCR-ABL LSKs with expansion of myeloid-primed and loss of lymphoid-primed factions. Bulk RNA-seq analyses along with unbiased metabolomic profiling and functional metabolic assays demonstrated enhanced fatty acid β-oxidation (FAO) and oxidative phosphorylation (OxPhos) in miR-142−/−BCR-ABL LSKs vs miR-142+/+BCR-ABL LSKs. MiR-142 deficit enhanced FAO in miR-142−/−BCR-ABL LSKs by increasing the expression of CPT1A and CPT1B, that controls the cytosol-to-mitochondrial acyl-carnitine transport, a critical step in FAO. MiR-142 deficit also enhanced OxPhos in miR-142−/−BCR-ABL LSKs by increasing mitochondrial fusion and activity. As the homeostasis and activity of LSCs depend on higher levels of these oxidative metabolism processes, we then postulate that miR-142 deficit is a potentially druggable target for BC-LSCs. To this end, we developed a novel CpG-miR-142 mimic oligonucleotide (ODN; i.e., CpG-M-miR-142) that corrected the miR-142 deficit and alone or in combination with a tyrosine kinase inhibitor (TKI) significantly reduced LSC burden and prolonged survival of miR-142−/−BCR-ABL mice. The results from murine models were validated in BC CD34+CD38- primary blasts and patient-derived xenografts (PDXs). In conclusion, an acquired miR-142 deficit sufficed in transforming CP-LSCs into BC-LSCs, via enhancement of bioenergetic oxidative metabolism in absence of any additional gene mutations, and likely represent a novel therapeutic target in BC CML.
Project description:Precursor B-lineage acute lymphoblastic leukemia (pre-B ALL) can be subdivided into different categories based on genetic abnormalities. One type of pre-B ALL is characterized by the presence of the Philadelphia (Ph) chromosome, the derivative chromosome 22 that is one product of a reciprocal translocation between chromosomes 22 and 9. The 22/9 translocation fuses the 5’ part of the BCR gene to the 3’ end of the c-ABL gene. The resulting BCR/ABL fusion encodes a Bcr/Abl protein with deregulated Abl kinase activity. Two major fusion proteins are found in Ph-positive leukemias which differ in molecular weight and the size of the Bcr moiety. The P190 Bcr/Abl protein is common in Ph-positive ALL. Targeted tyrosine kinase inhibitors such as nilotinib are used therapeutically to treat this type of leukemia. The 22/9 translocation fuses the 5’ part of the BCR gene to the 3’ end of the c-ABL gene. The resulting BCR/ABL fusion encodes a Bcr/Abl protein with deregulated Abl kinase activity. Two major fusion proteins are found in Ph-positive leukemias which differ in molecular weight and the size of the Bcr moiety. The P190 Bcr/Abl protein is common in Ph-positive ALL. Targeted tyrosine kinase inhibitors such as nilotinib are used therapeutically to treat this type of leukemia.
Project description:We previously demonstrated that Alox5 deficiency impairs the function of LSCs and prevents the initiation of BCR-ABL-induced CML. To identify the pathways in which Alox5 gene regulates function of LSCs, we performed a comparative DNA microarray analysis using total RNA isolated from non-BCR-ABL-expressing Lin-Sca-1+c-Kit+, BCR-ABL-expressing wild type LSCs and BCR-ABL-expressing Alox5-/- LSCs. The result was validated by quantitative real-time PCR analysis of non-BCR-ABL-expressing Lin-Sca-1+c-Kit+, BCR-ABL-expressing wild type LSCs and BCR-ABL-expressing Alox5-/- LSCs. We have shown that Alox5 is a critical regulator of leukemia stem cells (LSCs) in a BCR-ABL-induced chronic myeloid leukemia (CML) mouse model, and we hypothesize that the Alox5 pathway represents a major molecular network that regulates LSC function. Therefore, we sought to further dissect this pathway by comparing the gene expression profiles of wild type and Alox5-/- LSCs derived from our mouse model for BCR-ABL-induced CML. DNA microarray analysis revealed a small group of candidate genes that exhibited changes in the levels of transcription in the absence of Alox5 expression. In particular, we noted that the expression of the Msr1 gene was up-regulated in Alox5-/- LSCs, suggesting that Msr1 might suppress the proliferation of LSCs. Using our CML mouse model, we show that Msr1 is down-regulated by BCR-ABL and this down-regulation is partially restored by Alox5 deletion, and that Msr1 deletion causes acceleration of CML development. Moreover, Msr1 deletion markedly increases LSC function through its effects on cell cycle progression and apoptosis. We also show that Msr1 affects CML development by regulating the PI3K-AKT pathway and β-Catenin. Together, these results demonstrate that Msr1 suppresses LSCs and CML development. The enhancement of Msr1 function may be of significance in the development of novel therapeutic strategies targeting CML.
Project description:Although Bcr-Abl kinase inhibitors have proven effective in the treatment of chronic myeloid leukemia (CML), they generally fail to completely eradicate Bcr-Abl+ leukemia cells. To identify genes whose inhibition sensitizes Bcr-Abl+ leukemias to killing by Bcr-Abl inhibitors, we performed an RNAi-based synthetic lethal screen with imatinib in CML cells. This screen identified numerous components of a Wnt/Ca2+/NFAT signaling pathway. Antagonism of this pathway led to impaired NFAT activity, decreased cytokine production and enhanced sensitivity to Bcr-Abl inhibition. Furthermore, NFAT inhibition with cyclosporin A facilitated leukemia cell elimination by the Bcr-Abl inhibitor dasatinib and markedly improved survival in a mouse model of Bcr-Abl+ acute lymphoblastic leukemia (ALL). Targeting this pathway in combination with Bcr-Abl inhibition could improve treatment of Bcr-Abl+ leukemias.