Project description:We report a case of infectious endocarditis attributable to Legionella longbeachae. L. longbeachae is usually associated with lung infections. It is commonly found in composted waste wood products. L. longbeachae should be regarded as an agent of infectious endocarditis, notably in the context of gardening involving handling of potting soils.
Project description:Mucosal associated invariant T (MAIT) cells recognise conserved microbial metabolites from riboflavin synthesis. Striking evolutionary conservation and pulmonary abundance implicate them in antibacterial host defence, yet their functions in protection against clinically important pathogens are unknown. Here we show that mouse Legionella longbeachae infection induces MR1-dependent MAIT cell activation and rapid pulmonary accumulation of MAIT cells associated with immune protection detectable in immunocompetent host animals. MAIT cell protection is more evident in mice lacking CD4+ cells, and adoptive transfer of MAIT cells rescues immunodeficient Rag2-/-?C-/- mice from lethal Legionella infection. Protection is dependent on MR1, IFN-? and GM-CSF, but not IL-17A, TNF or perforin, and enhanced protection is detected earlier after infection of mice antigen-primed to boost MAIT cell numbers before infection. Our findings define a function for MAIT cells in protection against a major human pathogen and indicate a potential role for vaccination to enhance MAIT cell immunity.
Project description:Legionella longbeachae, found in soil and compost-derived products, is a globally underdiagnosed cause of Legionnaires' disease. We conducted a case-control study of L. longbeachae Legionnaires' disease in Canterbury, New Zealand. Case-patients were persons hospitalized with L. longbeachae pneumonia, and controls were persons randomly sampled from the electoral roll for the area served by the participating hospital. Among 31 cases and 172 controls, risk factors for Legionnaires' disease were chronic obstructive pulmonary disease, history of smoking >10 years, and exposure to compost or potting mix. Gardening behaviors associated with L. longbeachae disease included having unwashed hands near the face after exposure to or tipping and troweling compost or potting mix. Mask or glove use was not protective among persons exposed to compost-derived products. Precautions against inhaling compost and attention to hand hygiene might effectively prevent L. longbeachae disease. Long-term smokers and those with chronic obstructive pulmonary disease should be particularly careful.
Project description:To understand the basis of pathogenesis by Legionella longbeachae serogroup 1, the importance of the Mip protein in this species was examined. Amino-terminal analysis of the purified, cloned L. longbeachae serogroup 1 ATCC 33462 Mip protein confirmed that the cloned gene protein was expressed and processed in an Escherichia coli background. DNA sequence analysis of plasmid pIMVS27, containing the entire L. longbeachae serogroup 1 mip gene, revealed a high degree of homology to the mip gene of Legionella pneumophila serogroup 1, 76% homology at the DNA level and 87% identity at the amino acid level. Primer extension analysis determined that the start site of transcription was the same for both species, with some differences observed for the -10 and -35 promoter regions. Primers designed from the mip gene sequence obtained for L. longbeachae serogroup 1 ATCC 33462 were used to amplify the mip genes from L. longbeachae serogroup 2 ATCC 33484 and an Australian clinical isolate of L. longbeachae serogroup 1 A5H5. The mip gene from A5H5 was 100% identical to the type strain sequence. The serogroup 2 strain of L. longbeachae differed by 2 base pairs in third-codon positions. Allelic exchange mutagenesis was used to generate an isogenic mip mutant in ATCC 33462 and strain A5H5. The ATCC mip mutant was unable to infect a strain of Acanthamoebae sp. both in liquid and in a potting mix coculture system, while the A5H5 mip mutant behaved in a manner siilar to that of L. pneumophila serogroup 1, i.e., it displayed a reduced capacity to infect and multiply within Acanthamoebae. To determine if this mutation resulted in reduced virulence in the guinea pig animal model, the A5H5 mip mutant and its parent strain were assessed for their abilities to establish an infection after aerosol exposure. Unlike the virulent parent strain, the mutant strain did not kill any animals under two different dose regimes. The data indicate that the Mip protein plays an important role in the intracellular life cycle of L. longbeachae serogroup 1 species and is required for full virulence.