Project description:We report a case of infectious endocarditis attributable to Legionella longbeachae. L. longbeachae is usually associated with lung infections. It is commonly found in composted waste wood products. L. longbeachae should be regarded as an agent of infectious endocarditis, notably in the context of gardening involving handling of potting soils.
Project description:Mucosal associated invariant T (MAIT) cells recognise conserved microbial metabolites from riboflavin synthesis. Striking evolutionary conservation and pulmonary abundance implicate them in antibacterial host defence, yet their functions in protection against clinically important pathogens are unknown. Here we show that mouse Legionella longbeachae infection induces MR1-dependent MAIT cell activation and rapid pulmonary accumulation of MAIT cells associated with immune protection detectable in immunocompetent host animals. MAIT cell protection is more evident in mice lacking CD4+ cells, and adoptive transfer of MAIT cells rescues immunodeficient Rag2-/-γC-/- mice from lethal Legionella infection. Protection is dependent on MR1, IFN-γ and GM-CSF, but not IL-17A, TNF or perforin, and enhanced protection is detected earlier after infection of mice antigen-primed to boost MAIT cell numbers before infection. Our findings define a function for MAIT cells in protection against a major human pathogen and indicate a potential role for vaccination to enhance MAIT cell immunity.
Project description:Legionella longbeachae, found in soil and compost-derived products, is a globally underdiagnosed cause of Legionnaires' disease. We conducted a case-control study of L. longbeachae Legionnaires' disease in Canterbury, New Zealand. Case-patients were persons hospitalized with L. longbeachae pneumonia, and controls were persons randomly sampled from the electoral roll for the area served by the participating hospital. Among 31 cases and 172 controls, risk factors for Legionnaires' disease were chronic obstructive pulmonary disease, history of smoking >10 years, and exposure to compost or potting mix. Gardening behaviors associated with L. longbeachae disease included having unwashed hands near the face after exposure to or tipping and troweling compost or potting mix. Mask or glove use was not protective among persons exposed to compost-derived products. Precautions against inhaling compost and attention to hand hygiene might effectively prevent L. longbeachae disease. Long-term smokers and those with chronic obstructive pulmonary disease should be particularly careful.
Project description:Legionella longbeachae and Legionella pneumophila are the most common causative agents of Legionnaires' disease. While the clinical manifestations caused by both species are similar, species-specific differences exist in environmental niches, disease epidemiology, and genomic content. One such difference is the presence of a genomic locus predicted to encode a capsule. Here, we show that L. longbeachae indeed expresses a capsule in post-exponential growth phase as evidenced by electron microscopy analyses, and that capsule expression is abrogated when deleting a capsule transporter gene. Capsule purification and its analysis via HLPC revealed the presence of a highly anionic polysaccharide that is absent in the capsule mutant. The capsule is important for replication and virulence in vivo in a mouse model of infection and in the natural host Acanthamoeba castellanii. It has anti-phagocytic function when encountering innate immune cells such as human macrophages and it is involved in the low cytokine responses in mice and in human monocyte derived macrophages, thus dampening the innate immune response. Thus, the here characterized L. longbeachae capsule is a novel virulence factor, unique among the known Legionella species, which may aid L. longbeachae to survive in its specific niches and which partly confers L. longbeachae its unique infection characteristics.