Project description:Generated AZA resistant cell line (TAR) and analysis markedly different gene expression levels between THP-1 and TAR. Two condition experiment, THP-1 control vs. AZA resistant cell line.
Project description:Bortezomib is a proteasome inhibitor used in severel different hematological malignancies. Resistance to this drug is still poorly understood. In order get more insight in the resistance mechanism, we developed several bortezomib resistant subclones of the THP-1 monocytic/macrophage cell line. On these subclones expression arrays were performed. We performed expression array three different bortezomib resistant subclones of the THP-1 cell line. The resistant subclones were spotted against the parental THP-1 wildtype cell line.
Project description:Bortezomib is a proteasome inhibitor used in severel different hematological malignancies. Resistance to this drug is still poorly understood. In order get more insight in the resistance mechanism, we developed several bortezomib resistant subclones of the THP-1 monocytic/macrophage cell line. On these subclones expression arrays were performed.
Project description:The whole exome sequencing experiment is part of the study: “Analysis of 5-azacytidine resistance models reveals a set of targetable pathways”. In the study we generated myelodysplastic syndrome/acute myeloid leukemia (MDS/AML) OCI-M2 cell lines as well as patient-derived bone marrow cell lines that are resistant to hypomethylating therapy by 5-azacytidine (AZA). By integrated analysis of expression and mutation data obtained from these samples we have identified multiple signaling pathways whose modulation by specific small molecule inhibitors significantly block proliferation of AZA-resistant cell lines without increasing their sensitivity to AZA. The understanding of the molecular mechanisms which characterize the AZA-R phenotype can be used for broadening therapeutic options at progressing states during AZA therapy.
Project description:Extensively drug resistant tuberculosis (XDR-TB) showed many different characteristics including the extreme drug resistance versus the drug sensitive clinical isolates (DS-TB), to know better about the reasons we used the tuberculosis host cells named as THP-1 (one kind of the macrophage cells) to be infected by the XDR-TB and DS-TB.DS strain A36 and the XDR strain B42 and was typical and selected by our lab. Then the total RNA of infected or uninfected THP-1 cells was extract and purified for the analysis by the chip (22K Human Genome chip representing the 21522 ORF of human with the oligonucleotide probe of 70 mer from CapitalBio Corp., Beijing, China). The results reflected the different expressed genes involved in apoptosis, secreted cytokines and signal pathway and so on. Those results might indicate the how the XDR-TB cause the pathogenesis. In this study, the well grown THP-1 cells were separated and cultured in three ampoules. Cells in one ampoules were infected with XDR-TB strain of B42. Cells in another ampoules were infected with DS-TB strain of A36, with the cells in the third one were not infected and just treated with PBS as the control. Then the dual channel method was used for detecting the hybridization of B42 vs the control or A36 vs control. This work was repeated for three times.
Project description:Analysis of interferon-stimulated genes (ISGs) in various primary cells and immortalized cell lines, following type 1 interferon (IFN) treatment. Some cell types become resistant to HIV-1 infection following type 1 interferon treatment (such as macrophages, THP-1, PMA-THP-1, U87-MG cells and to a lesser extent, primary CD4+ T cells) while others either become only partially resistant (e.g., HT1080, PMA-U937) or remain permissive (e.g., CEM, CEM-SS, Jurkat T cell lines and U937); for more information see (Goujon and Malim, Journal of Virology 2010) and (Goujon and Schaller et al., Retrovirology 2013). We hypothesized that the anti-HIV-1 ISGs are differentially induced and expressed in restrictive cells compared to permissive cells and performed a whole genome analysis following type 1 IFN treatment in cell types exhibiting different HIV-1 resistance phenotypes. 48 samples; design: 9 cell lines, primary CD4+ T cells and primary macrophages, untreated and IFN-treated; 2 replicate experiments per cell line; 3 replicate experiments per primary cell type
Project description:Human melanoma tumor cells (HS294T) and monocytes (THP-1) were infected with a double deleted (-VGF, -TK) oncolytic vaccinia virus expressing human DAI (DNA-dependent activator of interferon-regulatory factors). Total RNA was collected and gene expresson profiles were determined with Agilent microarray. An oncolytic vaccinia virus that does not express DAI was used to control the effect of DAI and uninfected cells (PBS treated) were used to control the effect of virus infection. In oncolytic virotherapy the ability of the virus to activate the immune system against tumors is nowadays generally understood to be a key mechanism in full eradication of cancer and for long-term anti-tumor effects. We armed an oncolytic vaccinia virus with DAI to increase the immunogenicity and the vaccine potency of the virus. The aim of this study was to study if the expression of DAI by a replicating vaccinia virus would alter the gene expression profile of infected cells and to study what are the differentially expressed genes. Three-condition experiment: vvdd-tdTomato-hDAI vs. vvdd-tdTomato vs. PBS treated cells. 2 cell lines: HS294T tumor cells and THP-1 monocytes. 3 biological replicates of virus infected cells per cell line and 2 uninfected replicates per cell line. HS294T and THP-1 cells were treated with vvdd-tdTomato-hDAI or vvdd-tdTomato control virus, or with PBS only to have an uninfected control. 16 hours after infection total RNA was extracted and whole genome gene pfofiles were analyzed and differentially expressed genes determined.