Project description:Human primary keratinocytes were depleted of GRHL3 by siRNA and induced to differentiated for 2 days by addition of Calcium Primary normal human keratinocytes were transfected with GRHL3 or scrambled control siRNA using RNAi max (Life Technologies). 24 hours post transfection medium was raised to 1.8mM to induce differentiation. Cells were collected 48 hours later.
Project description:Gene expression profiling of immortalized human mesenchymal stem cells with hTERT/E6/E7 transfected MSCs. hTERT may change gene expression in MSCs. Goal was to determine the gene expressions of immortalized MSCs.
Project description:Stem and progenitor cells maintain the tissue they reside in for life by regulating the balance between proliferation and differentiation. How this is done is not well understood. Here, we report that the human exosome maintains progenitor cell function. The expression of several subunits of the exosome were found to be enriched in epidermal progenitor cells, which were required to retain proliferative capacity and to prevent premature differentiation. Loss of PM/Scl-75 also known as EXOSC9, a key subunit of the exosome complex, resulted in loss of cells from the progenitor cell compartment, premature differentiation, and loss of epidermal tissue. EXOSC9 promotes self-renewal and prevents premature differentiation by maintaining transcript levels of a transcription factor necessary for epidermal differentiation, GRHL3, at low levels through mRNA degradation. These data demonstrate that control of differentiation specific transcription factors through mRNA degradation is required for progenitor cell maintenance in mammalian tissue. Refer to publication (Mistry et. Cell Stem Cell 2012) for more detail For gene expression profiling, cultured primary human keratinocytes were knocked down for EXOSC9, EXOSC9 and GRHL3, or control. RNA was harvested from the cells 5 days after knockdown. Microarray analysis using Affymetrix HG-U133 2.0 plus arrays was performed on duplicate samples. Significantly changed genes were identified as previously described(Sen et al., 2010).
Project description:Transcriptional profiling of human mesenchymal stem cells comparing normoxic MSCs cells with hypoxic MSCs cells. Hypoxia may inhibit senescence of MSCs during expansion. Goal was to determine the effects of hypoxia on global MSCs gene expression.