Project description:Xanthomonas oryzae pv. oryzae (Xoo) and X. oryzae pv. oryzicola (Xoc) are important bacterial pathogens of the worldwide staple and grass model, rice. Xoo invades rice vascular tissue to cause bacterial leaf blight, a serious disease of rice throughout the world. Xoc colonizes the parenchyma tissue to cause bacterial leaf steak, a disease of emerging importance. We have designed oligonucleotide probes (50-70-mers) represented 2,858 Xoo genes and 1,816 Xoc genes annotated by The Institute for Genomic Research (TIGR). To validate the Xo arrays, self-hybridization samples and tests of the non-specific hybridization using randomly spotted oligonucleotides corresponding to the hygromycin phosphotransferase gene (hph), and blank spot and of the correlation coefficient between biological replicates as well as between duplicate spots revealed that the data generated from our oligo array were highly reliable and consistent. To demonstrate application of Xo array, we performed expression profiling experiments on arrays hybridized with RNA of Xoo and Xoc grown in the two different nutrient-condition media. Several sets of genes involved in bacterial movement, chemotaxis, and hrp genes differentially express in response to different treatment. Due to comprehensive views of microarray study, extended biological events of plant-bacteria interaction was described. This publicly available microarray for Xanthomonas oryzae (Xo) is an enabling resource for a large and international community of scientists to better understand not only Xo biology but also many other Xanthomonas species that cause significant losses on crops. Keywords: Media condition response
Project description:Xanthomonas oryzae pv. oryzae (Xoo) causes the bacterial leaf blight of rice, which leads to as much as 50% yield losses. To understand the landscape of virulence mechanisms, we constructed in planta transcriptional profiling of Xoo KACC10331 using RNA-seq. Three in planta transcriptome of Xoo KACC10331 derived from infected rice leafs were compared to three in vitro data from rich media. To obtain differentially expressed genes, we used the DEGseq package with MA-plot-based method in the R statistical environment and identified 2,094 transcripts that were significantly altered.
Project description:Endogenous small RNAs are newly identified players in plant immune responses, yet their roles in rice (Oryza sativa) responding to pathogens are still less understood, especially for pathogens that can cause severe yield losses. Here, we examined the small RNA expression profiles of rice leaves at 2, 6, 12, and 24 hours post infection of Xanthomonas oryzae pv. oryzae (Xoo) virulent strain PXO99, the causal agent of rice bacterial blight disease. Dynamic expression changes of some miRNAs and trans-acting siRNAs (ta-siRNAs) were identified, together with a few novel miRNA targets, including a disease resistance gene targeted by osa-miR159a.1. Coordinated expression changes were observed among some miRNA and ta-siRNAs in response to Xoo infection, with small RNAs exhibiting the same expression pattern tended to regulate genes in the same or functional correlated signaling pathways, including auxin and GA signaling pathways, nutrition and defense related pathways, etc. Highly abundant small RNAs with pathogen-responsive expression changes were identified from the exonic region of a protein-coding gene, which may present a new class of functional small RNAs. These findings reveal the dynamic and complex roles of small RNAs in rice-pathogen interactions, and identified new targets for regulating plant immune responses.
Project description:we emphatically monitored the responsive changes of rice miRNAs at 0, 8, 24 hours across Xoo strain PXO86 infection in its compatible rice variety IR24 and incompatible variety IRBB5 by small RNA sequencing, and the genes targeted by miRNAs were also detected via degradome technology. These findings provide new insights into the complex roles of characteristic miRNAs and their targets in rice-Xoo interactions.
Project description:we emphatically monitored the responsive changes of genes targeted by rice miRNAs miRNAs at 0, 8, 24 hours across Xoo strain PXO86 infection in its compatible rice variety IR24 and incompatible variety IRBB5 by degradome technology.These findings provide new insights into the complex roles of characteristic miRNAs in rice-Xoo interactions.
Project description:In this study, using a novel dual RNA-seq approach we monitored the global transcriptional changes in real time of Xanthomonas oryzae pv. oryzicola and rice during infection. Our transcriptome maps of Xoc strains infecting rice provide mechanistic insights into the bacterias adaptive responses to the host niche, with modulation of central metabolism being an important signature. The study also uncovers that infected rice responds by substantial alteration of the cell wall, stress and structural proteins.
Project description:Xanthomonas oryzae pv. oryzae (Xoo) and X. oryzae pv. oryzicola (Xoc) are important bacterial pathogens of the worldwide staple and grass model, rice. Xoo invades rice vascular tissue to cause bacterial leaf blight, a serious disease of rice throughout the world. Xoc colonizes the parenchyma tissue to cause bacterial leaf steak, a disease of emerging importance. We have designed oligonucleotide probes (50-70-mers) represented 2,858 Xoo genes and 1,816 Xoc genes annotated by The Institute for Genomic Research (TIGR). To validate the Xo arrays, self-hybridization samples and tests of the non-specific hybridization using randomly spotted oligonucleotides corresponding to the hygromycin phosphotransferase gene (hph), and blank spot and of the correlation coefficient between biological replicates as well as between duplicate spots revealed that the data generated from our oligo array were highly reliable and consistent. To optimize the suitable protocol for hybridizing sample onto XOarray slides, we performed hybridization with 4 temperature levels (42 0C, 44 0C, 48 0C, and 52 0C) and 5 numbers of template amounts (10 pMol, 20 pMol, 30 pMol, 40 pMol, and 50 pMol) for hybridization process. Two level of PMT (Power of the scanner photomultiplicator) exposed to hybridized glass slides. Total samples is 36 slides (4 temperatures x 2 technical replicates x 2 PMT level = 16 slides and 5 numbers of template amount x 2 technical replicates x 2 PMT level = 20 slides). Keywords: Condition Optimization
Project description:Endogenous small RNAs are newly identified players in plant immune responses, yet their roles in rice (Oryza sativa) responding to pathogens are still less understood, especially for pathogens that can cause severe yield losses. Here, we examined the small RNA expression profiles of rice leaves at 2, 6, 12, and 24 hours post infection of Xanthomonas oryzae pv. oryzae (Xoo) virulent strain PXO99, the causal agent of rice bacterial blight disease. Dynamic expression changes of some miRNAs and trans-acting siRNAs (ta-siRNAs) were identified, together with a few novel miRNA targets, including a disease resistance gene targeted by osa-miR159a.1. Coordinated expression changes were observed among some miRNA and ta-siRNAs in response to Xoo infection, with small RNAs exhibiting the same expression pattern tended to regulate genes in the same or functional correlated signaling pathways, including auxin and GA signaling pathways, nutrition and defense related pathways, etc. Highly abundant small RNAs with pathogen-responsive expression changes were identified from the exonic region of a protein-coding gene, which may present a new class of functional small RNAs. These findings reveal the dynamic and complex roles of small RNAs in rice-pathogen interactions, and identified new targets for regulating plant immune responses. Examination of the small RNA expression profiles of rice leaves at 2, 6, 12, and 24 hours post infection of Xanthomonas oryzae pv. oryzae (Xoo) virulent strain PXO99