Project description:Techniques for systematically monitoring protein translation have lagged far behind methods for measuring mRNA levels. Here we present a ribosome profiling strategy, based on deep sequencing of ribosome protected mRNA fragments, that enables genome-wide investigation of translation with sub-codon resolution. We used this technique to monitor translation in budding yeast under both rich and starvation conditions. These studies defined the protein sequences being translated and found extensive translational control both for determining absolute protein abundance and for responding to environmental stress. We also observed distinct phases during translation involving a large decrease in ribosome density going from early to late peptide elongation as well as wide-spread, regulated initiation at non-AUG codons. Ribosome profiling is readily adaptable to other organisms, making high-precision investigation of protein translation experimentally accessible. Examine replicates of ribosome footprints and mRNA abundance in biological replicates of log-phase growth and acute amino acid starvation
Project description:The ribosome profiling strategy for monitoring translation in vivo by deep sequencing of ribosome-protected mRNA fragments in HuH-7 cells
Project description:Recent studies highlight the importance of translational control in determining protein abundance, underscoring the value of measuring gene expression at the level of translation. We present a protocol for genome-wide, quantitative analysis of in vivo translation by deep sequencing. This ribosome profiling approach maps the exact positions of ribosomes on transcripts by nuclease footprinting. The nuclease-protected mRNA fragments are converted into a DNA library suitable for deep sequencing using a strategy that minimizes bias. The abundance of different footprint fragments in deep sequencing data reports on the amount of translation of a gene. Additionally, footprints reveal the exact regions of the transcriptome that are translated. To better define translated reading frames, we describe an adaptation that reveals the sites of translation initiation by pre-treating cells with harringtonine to immobilize initiating ribosomes. The protocol we describe requires 5 - 7 days to generate a completed ribosome profiling sequencing library. Ribosome profiling in cultured mammalian cells under three different footprinting conditions
Project description:Techniques for systematically monitoring protein translation have lagged far behind methods for measuring mRNA levels. Here we present a ribosome profiling strategy, based on deep sequencing of ribosome protected mRNA fragments, that enables genome-wide investigation of translation with sub-codon resolution. We used this technique to monitor translation in budding yeast under both rich and starvation conditions. These studies defined the protein sequences being translated and found extensive translational control both for determining absolute protein abundance and for responding to environmental stress. We also observed distinct phases during translation involving a large decrease in ribosome density going from early to late peptide elongation as well as wide-spread, regulated initiation at non-AUG codons. Ribosome profiling is readily adaptable to other organisms, making high-precision investigation of protein translation experimentally accessible.
Project description:Recent studies highlight the importance of translational control in determining protein abundance, underscoring the value of measuring gene expression at the level of translation. We present a protocol for genome-wide, quantitative analysis of in vivo translation by deep sequencing. This ribosome profiling approach maps the exact positions of ribosomes on transcripts by nuclease footprinting. The nuclease-protected mRNA fragments are converted into a DNA library suitable for deep sequencing using a strategy that minimizes bias. The abundance of different footprint fragments in deep sequencing data reports on the amount of translation of a gene. Additionally, footprints reveal the exact regions of the transcriptome that are translated. To better define translated reading frames, we describe an adaptation that reveals the sites of translation initiation by pre-treating cells with harringtonine to immobilize initiating ribosomes. The protocol we describe requires 5 - 7 days to generate a completed ribosome profiling sequencing library.
Project description:During translation elongation, the ribosome ratchets along its mRNA template, incorporating each new amino acid and translocating from one codon to the next. The elongation cycle requires dramatic structural rearrangements of the ribosome. We show here that deep sequencing of ribosome-protected mRNA fragments reveals not only the position of each ribosome but also, unexpectedly, its particular stage of the elongation cycle. Sequencing reveals two distinct populations of ribosome footprints, 28-30 nucleotides and 20-22 nucleotides long, representing translating ribosomes in distinct states, differentially stabilized by specific elongation inhibitors. We find that the balance of small and large footprints varies by codon and is correlated with translation speed. The ability to visualize conformational changes in the ribosome during elongation, at single-codon resolution, provides a new way to study the detailed kinetics of translation and a new probe with which to identify the factors that affect each step in the elongation cycle. Ribosome profiling, or sequencing of ribosome-protected mRNA fragments, in yeast. We assay ribosome footprint sizes and positions in three conditions: untreated yeast (3 replicates) and yeast treated with translation inhibitors cycloheximide (2 replicates) and anisomycin (2 biological replicates, one technical replicate). We also treat yeast with 3-aminotriazole to measure the effect of limited histidine tRNAs on ribosome footprint size and distribution (two treatment durations).
Project description:We performed ribosome profiling which is the deep-sequencing of mRNA fragments protected by translating ribosome for two Streptomyces species through different growth phases to provide the translatome data
Project description:The ability to sequence genomes has far outstripped approaches for deciphering the information they encode. Here we present a suite of techniques, based on ribosome profiling (the deep-sequencing of ribosome-protected mRNA fragments), to provide genome-wide maps of protein synthesis as well as a pulse-chase strategy for determining rates of translation elongation. We exploit the propensity of harringtonine to cause ribosomes to accumulate at sites of translation initiation together with a machine learning algorithm to define protein products systematically. Analysis of translation in mouse embryonic stem cells reveals thousands of strong pause sites and novel translation products. These include amino-terminal extensions and truncations and upstream open reading frames with regulatory potential, initiated at both AUG and non-AUG codons, whose translation changes after differentiation. We also define a new class of short, polycistronic ribosome-associated coding RNAs (sprcRNAs) that encode small proteins. Our studies reveal an unanticipated complexity to mammalian proteomes. Examination of translation in mouse embryonic stem cells and during differentiation into embryoid bodies
Project description:Environmental stress is detrimental to cell viability and requires an adequate reprogramming of cellular activities to maximize cell survival. We present a global analysis of the response of Escherichia coli to acute heat and osmotic stress. We combine deep sequencing of total mRNA and ribosome-protected fragments to provide a genome-wide map of the stress response at transcriptional and translational level. For each type of stress, we observe a unique subset of genes that shape the stress-specific response. Upon temperature upshift, mRNAs with reduced folding stability up- and downstream of the start codon, and thus with more accessible initiation regions, are translationally favoured. Conversely, osmotic upshift causes a global reduction of highly-translated transcripts with high copy numbers, allowing reallocation of translation resources to undegraded and newly synthesised mRNAs Comparing global transcriptional and translational control by mRNA-Seq and Ribosome Profiling (mRNA-Seq of ribosome protected fragments – RPF)
Project description:Protein synthesis by ribosomes takes place on a linear substrate but at variable speeds. Transient pausing of ribosomes can impact a variety of co-translational processes, including protein targeting and folding. These pauses are influenced by the sequence of the mRNA. Thus redundancy in the genetic code allows the same protein to be translated at different rates. However, our knowledge of both the position and the mechanism of translational pausing in vivo is highly limited. Here we present a genome-wide analysis of translational pausing in bacteria using ribosome profiling-deep sequencing of ribosome-protected mRNA fragments. This approach enables high-resolution measurement of ribosome density profiles along most transcripts at unperturbed, endogenous expression levels. Unexpectedly, we found that codons decoded by rare tRNAs do not lead to slow translation under nutrient-rich conditions. Instead, Shine-Dalgarno-(SD) like features within coding sequences cause pervasive translational pausing. Using an orthogonal ribosome possessing an altered anti-SD sequence, we demonstrated that pausing is due to hybridization between mRNA and the 16S rRNA of the translating ribosome. In protein coding sequences, internal SD sequences are disfavoured, which leads to biased usage, avoiding codons and codon pairs that resemble canonical SD sites. Our results indicate that internal SD-like sequences are a major determinant of translation rates and a global driving force for the coding of bacterial genomes. Identification of translation pause sites in vivo using ribosome profiling