Project description:This SuperSeries is composed of the following subset Series: GSE22618: JIL kinase – marker of active chromatin and sensor of dosage compensation GSE22620: JIL-1 RNAi in Drosophila S2 Cells Refer to individual Series
Project description:In Drosophila the chromosomal kinase JIL-1 is responsible for most interphase histone H3S10 phosphorylation and has been proposed to protect active chromatin from acquiring heterochromatic marks, like dimethylated histone H3K9 (H3K9me2) and HP1. Here, we show that JIL-1’s targeting to chromatin depends on a PWWP domain-containing protein JASPer (JIL-1 Anchoring and Stabilizing Protein). The JASPer-JIL-1 (JJ)-complex is the major form of the kinase in vivo and is targeted to active genes and telomeric transposons via binding of the PWWP domain of JASPer to H3K36me3 nucleosomes, where the complex modulates the transcriptional output. JIL-1 and JJ-complex depletion in cycling cells lead to small changes in H3K9me2 distribution at active genes and telomeric transposons. Finally, we identify several interactors of the endogenous JJ-complex and propose that JIL-1 not only prevents heterochromatin formation but also coordinates chromatin-based regulation in the transcribed part of the genome.
Project description:In flies, the chromosomal kinase JIL-1 is responsible for most interphase H3S10 phosphorylation and has been proposed to protect active chromatin from acquiring heterochromatic marks like H3K9me2 and HP1. Here, we show that JIL-1’s targeting to chromatin depends on a new PWWP domain containing protein JASPer (JIL-1 Anchoring and Stabilizing Protein). The JASPer/JIL-1 (JJ)-complex is the major form of the kinase in vivo and is targeted to active genes and telomeric transposons via binding of the PWWP domain of JASPer to H3K36me3 nucleosomes. Put in place, the complex modulates the transcriptional output. JIL-1 and JJ-complex depletion in cycling cells induce small changes in H3K9me2 distribution at active genes and telomeric transposons. Finally, we identified many new interactors of the endogenous JJ-complex and propose that JIL-1 not only prevents heterochromatinisation, but also coordinates chromatin based regulation in the transcribed part of the genome.
Project description:Drosophila X chromosomes are subject to dosage compensation in males and are known to have a specialized chromatin structure in the male soma. We are interested in how specific chromatin structure change contributes to X chromosome hyperactivity and dosage compensation. We have conducted a global analysis of localize two dosage compensation complex dependent histone marks H4AcK16 and H3PS10 and one dosage compensation complex independent histone mark H3diMeK4 in the genome, especially on X chromosome by ChIP-chip approach in both male and female adult flies. We also probed general genomewide chromatin structure by deep DNA sequencing of sheared ChIP input DNA from male and female adult flies.
Project description:In flies, the chromosomal kinase JIL-1 is responsible for most interphase H3S10 phosphorylation and has been proposed to protect active chromatin from acquiring heterochromatic marks like H3K9me2 and HP1. Here, we show that JIL-1’s targeting to chromatin depends on a new PWWP domain containing protein JASPer (JIL-1 Anchoring and Stabilizing Protein). The JASPer/JIL-1 (JJ)-complex is the major form of the kinase in vivo and is targeted to active genes and telomeric transposons via binding of the PWWP domain of JASPer to H3K36me3 nucleosomes. Put in place, the complex modulates the transcriptional output. JIL-1 and JJ-complex depletion in cycling cells induce small changes in H3K9me2 distribution at active genes and telomeric transposons. Finally, we identified many new interactors of the endogenous JJ-complex and propose that JIL-1 not only prevents heterochromatinisation, but also coordinates chromatin based regulation in the transcribed part of the genome.
Project description:In flies, the chromosomal kinase JIL-1 is responsible for most interphase H3S10 phosphorylation and has been proposed to protect active chromatin from acquiring heterochromatic marks like H3K9me2 and HP1. Here, we show that JIL-1’s targeting to chromatin depends on a new PWWP domain containing protein JASPer (JIL-1 Anchoring and Stabilizing Protein). The JASPer/JIL-1 (JJ)-complex is the major form of the kinase in vivo and is targeted to active genes and telomeric transposons via binding of the PWWP domain of JASPer to H3K36me3 nucleosomes. Put in place, the complex modulates the transcriptional output. JIL-1 and JJ-complex depletion in cycling cells induce small changes in H3K9me2 distribution at active genes and telomeric transposons. Finally, we identified many new interactors of the endogenous JJ-complex and propose that JIL-1 not only prevents heterochromatinisation, but also coordinates chromatin based regulation in the transcribed part of the genome.
Project description:In flies, the chromosomal kinase JIL-1 is responsible for most interphase H3S10 phosphorylation and has been proposed to protect active chromatin from acquiring heterochromatic marks like H3K9me2 and HP1. Here, we show that JIL-1’s targeting to chromatin depends on a new PWWP domain containing protein JASPer (JIL-1 Anchoring and Stabilizing Protein). The JASPer/JIL-1 (JJ)-complex is the major form of the kinase in vivo and is targeted to active genes and telomeric transposons via binding of the PWWP domain of JASPer to H3K36me3 nucleosomes. Put in place, the complex modulates the transcriptional output. JIL-1 and JJ-complex depletion in cycling cells induce small changes in H3K9me2 distribution at active genes and telomeric transposons. Finally, we identified many new interactors of the endogenous JJ-complex and propose that JIL-1 not only prevents heterochromatinisation, but also coordinates chromatin based regulation in the transcribed part of the genome.