Project description:Investigation of whole genome gene expression level changes in Plasmodium falciparum 3D7 delta-PfPuf2 mutant, compared to the wild-type strain 3D7. The mutation engineered into this strain render tanslational control. The mutants analyzed in this study are further described in Miao J, Li J, Fan Q, Li X, Li X, Cui L.2010. The Puf-family RNA-binding protein PfPuf2 regulates sexual development and sex differentiation in the malaria parasite Plasmodium falciparum. J Cell Sci. 123(7):1039-49 (PMID 20197405).
Project description:Investigation of whole genome gene expression level changes in Plasmodium falciparum 3D7 delta-PfPuf2 mutant, compared to the wild-type strain 3D7. The mutation engineered into this strain render tanslational control. The mutants analyzed in this study are further described in Miao J, Li J, Fan Q, Li X, Li X, Cui L.2010. The Puf-family RNA-binding protein PfPuf2 regulates sexual development and sex differentiation in the malaria parasite Plasmodium falciparum. J Cell Sci. 123(7):1039-49 (PMID 20197405). A 12 chip study using total RNA recovered from six separate wild-type cultures of Plasmodium falciparum 3D7 at gametocyte stage III (three cultures) and stage V (three cultures) and six separate cultures of dalta PfPuf2 mutant at gametocyte stage III (three cultures) and stage V (three cultures). Each chip measures the expression level of 5,367 genes from Plasmodium falciparum 3D7 with 45-60 mer probes with two replicates on final array of 71618 probes.
Project description:Genomic variation is an inherent phenomena observed among members of same species belonging to different geographical locations. In case of P. falciparum, an apicomplexan protozoan parasite, its 22.8 MB nuclear genome is known to display vast genetic diversity in the subtelomeric compartments having but not exclusively variant gene families like var, rifins and stevors and examples in other elements of the genome have recently been documented. Microarrays, relies solely on the genomic sequence information to capture the relevant transcript abundance and needs to consider these variations into account for revealing true transcriptional variation.Here, we describe the designing strategy of a custom P. falciparum 15K array using Agilent platform to study the transcriptome of Indian field isolates for which genome sequence information is limited. Array contains probes representing genome sequence of two distinct geographical isolates (i.e 3D7 and HB3) and subtelomeric var gene sequence of a third isolate (IT4) known to adhere in culture condition. Probes in the array have been selected based on their efficiency to detect transcripts by performing a 244K array experiment representing multiple probes per gene/transcript. Array performance was evaluated and validated using RNA materials from P. falciparum clinical isolates obtained directly from patients with differing clinical conditions due to malaria infection.Due to pre probe screening large percentage (91 %) of the represented transcripts could be detected from Indian P. falciparum isolates. Replicated probes and multiple probes representing the same gene showed perfect correlation between them suggesting good probe performance. Additional transcripts could be detected due to inclusion of unique probes representing HB3 strain transcripts. Variant surface antigen (VSA) transcripts were detected by optimized probes representing the VSA genes of three geographically distinct strains. Plasmodium falciparum isolates were collected from patients (n=13) with differing clinical conditions. The patients exhibited symptoms categorized as uncomplicated (n=6) or complicated malaria (n=7). Criteria for determination of complicated disease were based on World Health Organization year 2000 guidelines. Microarray array based transcriptional profiling was carried out to evaluate the performance of the array.
Project description:Transcriptomic Analysis of Cultured Sporozoites of P. falciparum RNA-seq reads from each of three developmental stages (2 replicates per sample) were mapped to the reference Plasmodium falciparum genome, and gene expression levels were calculated for each sample.
Project description:Investigation of whole genome gene expression level in Plasmodium falciparum male and female mature gametocytes, and detection of any transcriptional differences between male and female gametocytes. The Plasmodium falciparum parasite with green fluorescent protein (GFP) expression under the control of alpha tubulin II promoter facilitated the separation of male and female gametocyte. This engineered parasite strain in this study are further described in Miao J, Fan Q, Parker D, Li X, Li J, et al. (2013) Puf Mediates Translation Repression of Transmission-Blocking Vaccine Candidates in Malaria Parasites. PLoS Pathog 9(4): e1003268. doi: 10.1371/journal.ppat.1003268
Project description:ChIP-seq experiments were performed for the putative telomere repeat-binding factor (PfTRF) in the malaria parasite Plasmodium falciparum strain 3D7. The gene encoding this factor (PF3D7_1209300) was endogenously tagged with either a GFP- or a 3xHA-tag and these transgenic parasite lines were used in ChIP-sequencing experiments. Sequencing of the ChIP and input libraries showed enrichment of PfTRF at all telomere-repeat containing chromosome ends (reference genome Plasmodium falciparum 3D7 from PlasmoDB version 6.1) as well as in all upsB var promoters.In addition,PfTRF was enriched at seven additional, intra-chromosomal sites and called in the PfTRF-HA ChIP-seq only. Plasmodium falciparum 3D7 parasites were generated with -GFP or -3xHA C-terminal tagged TRF (PF3D7_1209300). Nuclei were isolated from formaldehyde cross-linked schizont-stage transgenic parasites and used to prepare chromatin. Chromatin immunoprecipitations were performed using mouse anti-GFP (Roche Diagnostics, #11814460001) or rat anti-HA 3F10 (Roche Diagnostics, #12158167001). Sequencing libraries were prepared according to a Plasmodium-optimized library preparation procedure including KAPA polymerase-mediated PCR amplification.