Project description:Breast cancer metastasis to bone is a critical determinant of long-term survival after treatment of primary tumors. We used a mouse model of spontaneous bone metastasis to determine new molecular mechanisms. Differential transcriptome comparisons of primary and metastatic tumor cells revealed that a substantial set of genes suppressed in bone metastases were highly enriched for promoter elements for the type I interferon (IFN) regulatory factor, Irf7, itself suppressed in mouse and human metastases. The critical function of the Irf7 pathway was demonstrated by restoration of exogenous Irf7 or systemic interferon administration, which significantly reduced bone metastases and prolonged metastasis free survival. Using mice deficient in the type I receptor (Ifnar1-/-) or mature B, T and NK cell responses (NOD Scid IL-2rγ-/- mice) we demonstrated that Irf7-driven suppression of metastasis was reliant on IFN signaling to host immune cells. Metastasis suppression correlated with decreased accumulation of myeloid-derived suppressor cells and increased CD4++, CD8 T cells and NK cells in the peripheral blood and was reversed by depletion of CD8+ cells and NK cells. Clinical importance of our findings was demonstrated as increased primary tumor Irf7 expression predicted prolonged bone and lung metastasis-free survival. Thus we report for the first time, a novel innate immune pathway, intrinsic to breast cancer cells, whose suppression in turn restricts systemic immunosurveillance to enable metastasis. This pathway may constitute a novel therapeutic target for restricting breast cancer metastases. Comparison of basal gene expression in breast cancer 4T1.2 cell line stably transfected using the pMSCV retroviral expression vector system with IRF7 or the base vector. Three independent experiments were performed comparing the IRF7 expressing cells to the base vector cells
Project description:Breast cancer metastasis to bone is a critical determinant of long-term survival after treatment of primary tumors. We used a mouse model of spontaneous bone metastasis to determine new molecular mechanisms. Differential transcriptome comparisons of primary and metastatic tumor cells revealed that a substantial set of genes suppressed in bone metastases were highly enriched for promoter elements for the type I interferon (IFN) regulatory factor, Irf7, itself suppressed in mouse and human metastases. The critical function of the Irf7 pathway was demonstrated by restoration of exogenous Irf7 or systemic interferon administration, which significantly reduced bone metastases and prolonged metastasis-free survival. Using mice deficient in the type I receptor (Ifnar1-/-) or mature B, T and NK cell responses (NOD Scid IL-2rγ-/- mice), we demonstrated that Irf7-driven suppression of metastasis was reliant on IFN signaling to host immune cells. Metastasis suppression correlated with decreased accumulation of myeloid-derived suppressor cells and increased CD4++, CD8 T cells and NK cells in the peripheral blood and was reversed by depletion of CD8+ cells and NK cells. Clinical importance of our findings was demonstrated as increased primary tumor Irf7 expression predicted prolonged bone and lung metastasis-free survival. Thus we report for the first time, a novel innate immune pathway, intrinsic to breast cancer cells, whose suppression in turn restricts systemic immunosurveillance to enable metastasis. This pathway may constitute a novel therapeutic target for restricting breast cancer metastases. Microarrays were used to profile transcriptional alterations inherent in tumor cells growing in bone when compared to matched primary tumor cells in the 4T1.2 murine mammary tumor model. Primary and metastasized tumor were isolated from the same mouse with 4 independent biological replicates.
Project description:Breast cancer metastasis to bone is a critical determinant of long-term survival after treatment of primary tumors. We used a mouse model of spontaneous bone metastasis to determine new molecular mechanisms. Differential transcriptome comparisons of primary and metastatic tumor cells revealed that a substantial set of genes suppressed in bone metastases were highly enriched for promoter elements for the type I interferon (IFN) regulatory factor, Irf7, itself suppressed in mouse and human metastases. The critical function of the Irf7 pathway was demonstrated by restoration of exogenous Irf7 or systemic interferon administration, which significantly reduced bone metastases and prolonged metastasis-free survival. Using mice deficient in the type I receptor (Ifnar1-/-) or mature B, T and NK cell responses (NOD Scid IL-2rγ-/- mice), we demonstrated that Irf7-driven suppression of metastasis was reliant on IFN signaling to host immune cells. Metastasis suppression correlated with decreased accumulation of myeloid-derived suppressor cells and increased CD4++, CD8 T cells and NK cells in the peripheral blood and was reversed by depletion of CD8+ cells and NK cells. Clinical importance of our findings was demonstrated as increased primary tumor Irf7 expression predicted prolonged bone and lung metastasis-free survival. Thus we report for the first time, a novel innate immune pathway, intrinsic to breast cancer cells, whose suppression in turn restricts systemic immunosurveillance to enable metastasis. This pathway may constitute a novel therapeutic target for restricting breast cancer metastases.
Project description:Breast cancer metastasis to bone is a critical determinant of long-term survival after treatment of primary tumors. We used a mouse model of spontaneous bone metastasis to determine new molecular mechanisms. Differential transcriptome comparisons of primary and metastatic tumor cells revealed that a substantial set of genes suppressed in bone metastases were highly enriched for promoter elements for the type I interferon (IFN) regulatory factor, Irf7, itself suppressed in mouse and human metastases. The critical function of the Irf7 pathway was demonstrated by restoration of exogenous Irf7 or systemic interferon administration, which significantly reduced bone metastases and prolonged metastasis free survival. Using mice deficient in the type I receptor (Ifnar1-/-) or mature B, T and NK cell responses (NOD Scid IL-2rγ-/- mice) we demonstrated that Irf7-driven suppression of metastasis was reliant on IFN signaling to host immune cells. Metastasis suppression correlated with decreased accumulation of myeloid-derived suppressor cells and increased CD4++, CD8 T cells and NK cells in the peripheral blood and was reversed by depletion of CD8+ cells and NK cells. Clinical importance of our findings was demonstrated as increased primary tumor Irf7 expression predicted prolonged bone and lung metastasis-free survival. Thus we report for the first time, a novel innate immune pathway, intrinsic to breast cancer cells, whose suppression in turn restricts systemic immunosurveillance to enable metastasis. This pathway may constitute a novel therapeutic target for restricting breast cancer metastases.
Project description:Metastasis is the primary cause of death of cancer patients. Dissecting mechanisms governing metastatic spread may uncover important tumor biology and/or yield promising therapeutic insights. Here we investigated the role of circular RNAs (circRNA) in metastasis, using melanoma as a model aggressive tumor. We identified silencing of Cerebellar Degeneration Related 1 (CDR1as), a regulator of the microRNA miR-7, as a hallmark of melanoma progression. We find that CDR1as depletion results from epigenetic silencing of its originating lincRNA, and promotes invasion in vitro and metastasis in vivo, through a miR-7-independent, IGF2BP3-mediated mechanism. Moreover, CDR1as levels identify cellular states associated with distinct therapeutic responses. Our study reveals functional, prognostic and predictive roles for CDR1as and expose circRNAs as key players in metastasis.
Project description:Metastasis is the primary cause of death of cancer patients. Dissecting mechanisms governing metastatic spread may uncover important tumor biology and/or yield promising therapeutic insights. Here we investigated the role of circular RNAs (circRNA) in metastasis, using melanoma as a model aggressive tumor. We identified silencing of Cerebellar Degeneration Related 1 (CDR1as), a regulator of the microRNA miR-7, as a hallmark of melanoma progression. We find that CDR1as depletion results from epigenetic silencing of its originating lincRNA, and promotes invasion in vitro and metastasis in vivo, through a miR-7-independent, IGF2BP3-mediated mechanism. Moreover, CDR1as levels identify cellular states associated with distinct therapeutic responses. Our study reveals functional, prognostic and predictive roles for CDR1as and expose circRNAs as key players in metastasis.
Project description:Colorectal cancers are the third most common cancer in the world. In advanced stages of colorectal cancers, peritoneal carcinomatosis and intraabdominal acid development occur. Although stomach cancer is the 5th most common cancer in the world, it is the third cancer with the highest mortality. Pancreatic cancer is one of the highest mortality cancers worldwide. Likewise, in advanced stages of stomach and pancreatic cancer, peritoneal carcinomatosis and intra- abdominal acid development occur. It is known that the immune system plays an important role in tumor development or destruction of tumor. Recent studies have shown that tumor cells develop escape mechanisms in the tumor microenvironment to escape from host immunity. It has been reported that differentiation of T cells towards Th2 and regulatory T cells is also effective in tumor progression(6). Changes in the tumor microenvironment and immune checkpoints are important mechanisms that lead to escape from the immune system. Immune checkpoints are on the agenda especially after 2018 Nobel Prize and they are important molecules in revealing the relationship.In our study, it is aimed to evaluate whether there is a difference in immune control points in patients with end-stage colorectal cancer, gastric cancer and pancreatic cancer compared to patients without malignancy, and the relationship of these parameters with patient survival and tumor spread mechanisms.
Project description:Tumors escape antigen-directed immunotherapies through a variety of mechanisms. We used single-cell RNA sequencing (scRNA-seq) to examine potential mechanisms of immune escape in patients with disease relapse or progression after T cell receptor T cell (TCR-T) immunotherapy directed against the minor histocompatibility antigen HA-1.