Project description:Streptococcus pneumoniae (pneumococcus) is a major human respiratory pathogen and the leading cause of bacterial pneumonia worldwide. Small regulatory RNAs (sRNAs), which often act by post-transcriptionally regulating gene expression, have been shown to be crucial for the virulence of S. pneumoniae and other bacterial pathogens. Over 170 putative sRNAs have been identified in S. pneumoniae TIGR4 strain (serotype 4) through transcriptomic studies, and a subset of these sRNAs have been further implicated in regulating pneumococcal pathogenesis. However, there was little overlap in the sRNAs identified among these studies, which indicated that the approaches used for sRNA identification were not sufficiently sensitive and robust and that there were likely many more undiscovered sRNAs encoded in the S. pneumoniae genome. Here, we sought to comprehensively identify sRNAs in Avery's virulent S. pneumoniae strain D39 using two independent RNA-seq based approaches. We developed an unbiased method for identifying novel sRNAs from bacterial RNA-seq data and have further tested the specificity of our analysis program towards identifying sRNAs encoded by both strains D39 and TIGR4. Interestingly, the genes for 15% of the putative sRNAs identified in strain TIGR4 including ones previously implicated in virulence were not present in strain D39 genome suggesting that the differences in sRNA repertoires between these two serotypes may contribute to their strain-specific virulence properties. Finally, this study has identified 67 new sRNA candidates in strain D39, 28 out of which have been further validated, raising the total number of sRNAs that have been identified in strain D39 to 112.
Project description:Streptococcus pneumoniae (pneumococcus) is a major human respiratory pathogen and a leading cause of bacterial pneumonia worldwide. Small regulatory RNAs (sRNAs), which often act by post-transcriptionally regulating gene expression, have been shown to be crucial for the virulence of S. pneumoniae and other bacterial pathogens. Over 170 putative sRNAs have been identified in S. pneumoniae TIGR4 strain (serotype 4) through transcriptomic studies, and a subset of these sRNAs have been further implicated in regulating pneumococcal pathogenesis. However, there is little overlap in the sRNAs identified among these studies, which indicates that the approaches used for sRNA identification were not sufficiently sensitive and robust and that there are likely many more undiscovered sRNAs encoded in the S. pneumoniae genome. Here, we sought to comprehensively identify sRNAs in Avery's virulent S. pneumoniae strain D39 using two independent RNA-seq based approaches. We developed an unbiased method for identifying novel sRNAs from bacterial RNA-seq data and have further tested the specificity of our analysis program towards identifying sRNAs encoded by both strains D39 and TIGR4. Interestingly, the genes for 15% of the putative sRNAs identified in strain TIGR4 including ones previously implicated in virulence are not present in strain D39 genome suggesting that the differences in sRNA repertoires between these two serotypes may contribute to their strain-specific virulence properties. Finally, this study has identified 67 new sRNA candidates in strain D39, 28 out of which have been further validated, raising the total number of sRNAs that have been identified in strain D39 to 112.
Project description:Diagnostic primer extension assay to serotype Streptococcus pneumoniae. Assay validation. Background: Monitoring of Streptococcus pneumoniae serotype epidemiology is essential since serotype replacement is a concern when introducing new polysaccharide-conjugate vaccines. To simplify S. pneumoniae serotyping, a novel PCR-based automated microarray assay was developed to assist in the tracking of the serotypes. Results: Autolysin (lytA), pneumolysin (ply) and eight genes located in the capsular operon (cps) were amplified using multiplex PCR. This step was followed by a tagged fluorescent primer extension step targeting serotype-specific polymorphisms. The tagged primers were then hybridized to a microarray. Results were exported to an expert system that transforms genetic typing data into capsular serotype identification. The assay was validated on 166 cultured S. pneumoniae samples from 63 different serotypes as determined by the Quellung method. In addition, the assay was tested on clinical specimens including 43 cerebrospinal fluid samples from patients with meningitidis and 59 nasopharyngeal aspirates from bacterial pneumonia patients. The assay presented with no cross-reactivity for 24 relevant bacterial species found in these types of samples. The limit of detection for serotyping and S. pneumoniae detection was 100 genome equivalent per reaction. Conclusion: This automated assay is amenable to clinical testing and does not require any culturing of the samples. The assay will be useful for the evaluation of serotype prevalence changes after new conjugate vaccines introduction.
Project description:Streptococcus pneumoniae (pneumococcus) is a leading human respiratory pathogen that causes a variety of serious mucosal and invasive diseases. D39 is an historically important serotype 2 strain that was used in experiments by Avery and coworkers to demonstrate that DNA is the genetic material. Although isolated nearly a century ago, D39 remains extremely virulent in murine infection models and is perhaps the strain used most frequently in current studies of pneumococcal pathogenicity. To date, the complete genome sequences have been reported for only two S. pneumoniae strains; TIGR4, a recent serotype 4 clinical isolate, and laboratory strain R6, an avirulent, unencapsulated derivative of strain D39. We report herein the genome sequences of two different isolates of strain D39 and the corrected sequence and updated annotation of strain R6. Comparisons of these three related sequences allowed deduction of the likely sequence of the D39 progenitor and mutations that arose in each isolate. Despite its numerous repeated sequences and IS elements, the serotype 2 genome has remained remarkably stable during cultivation, and one of the D39 isolates contains only 5 relatively minor mutations compared to the deduced D39 progenitor. In contrast, laboratory strain R6 contains 71 single base pair changes, 6 deletions, 4 insertions, and has lost the cryptic pDP1 plasmid compared to the D39 progenitor strain. Many of these mutations are in or affect the expression of genes that play important roles in regulation, metabolism, and virulence. The nature of the mutations that arose spontaneously in these three strains, relative global transcription patterns determined by microarray analyses, and the implications of the D39 genome sequences to studies of pneumococcal physiology and pathogenesis are presented and discussed. Keywords: bacterial strain comparison, bacterial isolate comparison
Project description:Diagnostic primer extension assay to serotype Streptococcus pneumoniae. Assay validation. Background: Monitoring of Streptococcus pneumoniae serotype epidemiology is essential since serotype replacement is a concern when introducing new polysaccharide-conjugate vaccines. To simplify S. pneumoniae serotyping, a novel PCR-based automated microarray assay was developed to assist in the tracking of the serotypes. Results: Autolysin (lytA), pneumolysin (ply) and eight genes located in the capsular operon (cps) were amplified using multiplex PCR. This step was followed by a tagged fluorescent primer extension step targeting serotype-specific polymorphisms. The tagged primers were then hybridized to a microarray. Results were exported to an expert system that transforms genetic typing data into capsular serotype identification. The assay was validated on 166 cultured S. pneumoniae samples from 63 different serotypes as determined by the Quellung method. In addition, the assay was tested on clinical specimens including 43 cerebrospinal fluid samples from patients with meningitidis and 59 nasopharyngeal aspirates from bacterial pneumonia patients. The assay presented with no cross-reactivity for 24 relevant bacterial species found in these types of samples. The limit of detection for serotyping and S. pneumoniae detection was 100 genome equivalent per reaction. Conclusion: This automated assay is amenable to clinical testing and does not require any culturing of the samples. The assay will be useful for the evaluation of serotype prevalence changes after new conjugate vaccines introduction. 166 quellung serotyped strains and two negative controls
Project description:The primary mechanism by which pneumococcal capsular polysaccharide-based vaccines are believed to mediate protection is by induction of serotype-specific opsonic antibodies that facilitate bacterial killing by phagocytes (opsonophagocytosis). However, antibodies that are protective against experimental pneumococcal pneumonia in mice but do not promote opsonophagocytic killing in vitro have also been identified 1-3. Such non-opsonic antibodies are associated with bacterial clearance in vivo, but the mechanism by which this occurs is unknown. In this letter, we demonstrate that a protective, non-opsonic serotype 3 pneumococcal capsular polysaccharide-specific monoclonal antibody (MAb) enhances quorum sensing, which results in competence induction and fratricide of serotype 3 pneumococcus. Gene expression profile analysis revealed that the MAb together with the pneumococcal autoinducer, competence stimulating peptide 2 (CSP2), augments differential expression of competence (com) related bacteriocin-like peptide (blp) genes that are known to be involved in pneumococcal fratricide. Taken together, these findings reveal a previously unsuspected mechanism of antibody action, namely, enhancement of quorum sensing and bacterial fratricide. Given that this activity does not require phagocytes, antibodies that function accordingly may hold promise as adjuncts to current vaccines or as desired products of next generation pneumococcal vaccines.
Project description:The primary mechanism by which pneumococcal capsular polysaccharide-based vaccines are believed to mediate protection is by induction of serotype-specific opsonic antibodies that facilitate bacterial killing by phagocytes (opsonophagocytosis). However, antibodies that are protective against experimental pneumococcal pneumonia in mice but do not promote opsonophagocytic killing in vitro have also been identified 1-3. Such non-opsonic antibodies are associated with bacterial clearance in vivo, but the mechanism by which this occurs is unknown. In this letter, we demonstrate that a protective, non-opsonic serotype 3 pneumococcal capsular polysaccharide-specific monoclonal antibody (MAb) enhances quorum sensing, which results in competence induction and fratricide of serotype 3 pneumococcus. Gene expression profile analysis revealed that the MAb together with the pneumococcal autoinducer, competence stimulating peptide 2 (CSP2), augments differential expression of competence (com) related bacteriocin-like peptide (blp) genes that are known to be involved in pneumococcal fratricide. Taken together, these findings reveal a previously unsuspected mechanism of antibody action, namely, enhancement of quorum sensing and bacterial fratricide. Given that this activity does not require phagocytes, antibodies that function accordingly may hold promise as adjuncts to current vaccines or as desired products of next generation pneumococcal vaccines. 6 samples
Project description:The catalase-negative, facultative anaerobe Streptococcus pneumoniae D39 is naturally resistant to hydrogen peroxide (H2O2) produced endogenously by pyruvate oxidase (SpxB). Here, we investigate the adaptive response to endogenously produced H2O2. We show that lactate oxidase, which converts lactate to pyruvate, positively impacts pyruvate flux through SpxB and that ∆lctO mutants produce significantly lower H2O2. In addition, both the SpxB and pyruvate dehydrogenase complex (PDHC) pathways contribute to acetyl-CoA production during aerobic growth, and the pyruvate format lyase (PFL) pathway is the major acetyl-CoA pathway during anaerobic growth. Microarray analysis of the D39 strain cultured under aerobic vs. strict anaerobic conditions show up-regulation of spxB, a rhodanese-like protein (spd0091), tpxD, sodA, piuB, piuD and an Fe-S protein biogenesis operon under H2O2-producing conditions. Proteome profiling of H2O2-induced sulfenylation reveals that sulfenylation levels correlate with cellular H2O2 production, with endogenous sulfenylation of ≈50 proteins. Deletion of tpxD increases cellular sulfenylation 5-fold and has an inhibitory effect on ATP generation. Two major targets of protein sulfenylation are glyceraldehyde-3-phosphate dehydrogenase (GapA) and SpxB itself, but also include pyruvate kinase, LctO, AdhE and acetate kinase (AckA). Sulfenylation of GapA is inhibitory, while the effect on SpxB activity is negligible, consistent with this cell-abundant protein functioning as a “sink” for endogenous H2O2. Strikingly, four enzymes of capsular polysaccharide biosynthesis are sulfenylated, as are enzymes associated nucleotide biosynthesis via ribulose-5-phosphate. We propose that LctO/SpxB-generated H2O2 functions as a signaling molecule to down-regulate capsule production and drive altered flux through sugar utilization pathways.
Project description:Invasive pneumococcal disease is preceded by asymptomatic colonization of the human nasopharynx by Streptococcus pneumoniae. Progression from colonization to invasion is a watershed in the host-pathogen interaction, and exposes the pneumococcus to markedly different microenvironments. This in turn, requires alterations in gene expression profile to adapt to the new niche. One apparent adaptive mechanism is reversible phase variation between “transparent” and “opaque” colony opacity phenotypes. Transparent phase variants colonize the nasopharynx more efficiently than opaque variants of the same strain, while opaque variants exhibit higher systemic virulence. Previous studies have reported quantitative differences in surface components such as the capsule, teichoic acid and certain surface proteins between the two phenotypes, but the underlying regulatory mechanism is not understood. In the present study, we found no differences in expression of key surface proteins between opaque and transparent variants of S. pneumoniae strain D39, but opaque cells produced five-fold more capsular polysaccharide. Subsequent microarray and real-time RT-PCR analysis showed no differences in capsule gene expression, but several genes involved in uridine monophosphate (UMP) biosynthesis were up-regulated in the opaque phenotype. This correlated with significant increases in the intracellular concentrations of both UMP and UDP-glucose, which are essential precursors for capsule biosynthesis. Our data suggest a novel mechanism for pneumococcal capsule regulation, in which rate-limiting precursor pathways are modulated rather than the capsule biosynthetic genes themselves. Keywords: Phase variants