Project description:The generation of the Lgr5_EGFP_ires_CreERT2 knock-in mouse allows marking of Lgr5 positive cells of different tissues. Here we use these mice to sort Lgr5 positive cells and their daughter cells form intestinal adenomas and describe the expression profile of these two cell populations.
Project description:The generation of the Lgr5_EGFP_ires_CreERT2 knock-in mouse allows marking of Lgr5 positive cells of different tissues. Here we use these mice to sort Lgr5 positive cells and their daughter cells form intestinal adenomas and describe the expression profile of these two cell populations. Intestinal adenomas were generated by inducing Apc deletion through tamoxifen injection in Apc_fl/fl-Lgr5_EGFP_ires_CreERT2 mice. In these mice, GFP is expressed under the control of the Lgr5 promoter, leading to highest GFP levels in Lgr5 positive cells (GFP-high). Dividing GFP-high cells pass on Gfp two their daughter cells, thereby diluting the GFP. Daughter cells can therefore be isolated based on their lower GFP positivity (GFP-low). We sorted these two cell fractions (GFP-high and GFP-low) and compared them to each other on 4X44K Agilent Whole Mouse Genome dual colour Microarrays (G4122F). Three independent sorts were performed and RNA of GFP-high cells hybridized directly against RNA of GFP-low cells in three dye swap experiments, resulting in six individual arrays.
Project description:The generation of the Lgr5_EGFP_ires_CreERT2 knock-in mouse allows marking of Lgr5 positive cells of different tissues by GFP expression. Here we use these mice to sort GFP positive cells from intestinal adenomas and compare those to GFP positive cells from normal small intestine.
Project description:We wanted to assess the role of Lef1 in ex vivo organoids using genetic mouse models of intestinal adenomas and scRNA-seq technology. Tumorigenesis was initiated by inducing Apc mutation in Lgr5+ stem cells. Intestinal cells of Lgr5-CreERT;Apc fl/fl (LApc) mouse and Lgr5-CreERT;Apc fl/fl; Lef1 fl/fl (LApcL) mouse were used to generate adenoma organoids. Organoids were cultured without growth factors for three passages and dissociated with Tryple express. We used WT mice as a control to distinguish adenoma cells. WT organoids were cultured with growth factors.
Project description:Constitutive activation of the Wnt pathway leads to adenoma formation, an obligatory step towards intestinal cancer. In view of the established role of Wnt in regulating stemness, we attempted the isolation of cancer stem cells (CSCs) from Apc- and Apc/KRAS-mutant intestinal tumours. Whereas CSCs are present in malignant Apc/KRAS–mutant carcinomas, they appear to be very rare (<10-6) in the benign Apc–mutant adenomas. In contrast, the Lin-CD24hiCD29+ subpopulation of adenocarcinoma cells appear to be enriched in CSCs with increased levels of active -catenin. Expression profiling analysis of the CSC-enriched subpopulation confirmed their enhanced Wnt activity and revealed additional differential expression of other signalling pathways, growth factor binding proteins, and extracellular matrix components. As expected, genes characteristic of the Paneth cell lineage (e.g. defensins) are co-expressed together with stem cell genes (e.g. Lgr5) within the CSC-enriched subpopulation. This is of interest as it may indicate a cancer stem cell niche role for tumor-derived Paneth-like cells, similar to their role in supporting Lgr5+ stem cells in the normal intestinal crypt. Overall, our results indicate that oncogenic KRAS activation in Apc-driven tumours results in the expansion of the CSCs compartment by increasing b-catenin intracellular stabilization. To identify molecular differences between stem-like and more differentiated (bulk) tumour cells from Apc1638N/+ and Apc1638N/+/KRASV12G intestinal adenomas and adenocarcinomas, we isolated total RNA from 104 Lin-CD24hiCD29+, Lin-CD24medCD29+/Lin-CD24loCD29+ and Lin- (bulk) tumour cells from 5 individual mice of each genotype (Apc1638N/+ and Apc1638N/+/KRASV12G). Total RNA samples were then employed to hybridize oligonucleotide microarrays (Affymetrix Mouse Genome 430A 2.0 Array) according to conventional protocols.
Project description:Introgressed variants from other species can be an important source of genetic variation because they may arise rapidly, can include multiple mutations on a single haplotype, and have often been pretested by selection in the species of origin. Although introgressed alleles are generally deleterious, several studies have reported introgression as the source of adaptive alleles-including the rodenticide-resistant variant of Vkorc1 that introgressed from Mus spretus into European populations of Mus musculus domesticus. Here, we conducted bidirectional genome scans to characterize introgressed regions into one wild population of M. spretus from Spain and three wild populations of M. m. domesticus from France, Germany, and Iran. Despite the fact that these species show considerable intrinsic postzygotic reproductive isolation, introgression was observed in all individuals, including in the M. musculus reference genome (GRCm38). Mus spretus individuals had a greater proportion of introgression compared with M. m. domesticus, and within M. m. domesticus, the proportion of introgression decreased with geographic distance from the area of sympatry. Introgression was observed on all autosomes for both species, but not on the X-chromosome in M. m. domesticus, consistent with known X-linked hybrid sterility and inviability genes that have been mapped to the M. spretus X-chromosome. Tract lengths were generally short with a few outliers of up to 2.7 Mb. Interestingly, the longest introgressed tracts were in olfactory receptor regions, and introgressed tracts were significantly enriched for olfactory receptor genes in both species, suggesting that introgression may be a source of functional novelty even between species with high barriers to gene flow.
Project description:Cell-autonomous transformation of Lgr5-positive intestinal stem cells into gastric stem cells upon loss of transcription factor Cdx2