Project description:Epithelial-mesenchymal transition (EMT) is in the highlights as a significant role in tumor progression and invasion. Snail was known as the one of regulators of EMT in various malignant tumors. The aim of this study was to investigate the effect of Snail on invasiveness/migratory ability of gastric cancer cell lines and clinicopathological and prognostic significance of Snail over-expression using immunohistochemistry in tissue microarray of 314 gastric adenocarcinomas (GC). Differential gene expression in Snail over-expressed GC was investigated using cDNA microarray analysis. Silencing of Snail by ShRNA induced decreased of invasion, migration of gastric cancer cell lines. In contrast, over-expression of Snail induced increased invasiveness and migratory ability of gastric cancer cell lines in accordance increase of VEGF and MMP11. Furthermore, the over-expression of Snail (?75% nuclear staining of Snail) was significantly associated with tumor progression (p<0.0001), lymph node metastases (p=0.002), lymphovascular invasion (p=0.002), and perineural invasion (p=0.002) in 314 GC patient. Snail over-expression was also associated with poor prognosis (shorter survival) in GC patients (p=0.023). cDNA microarray revealed 213 differential expressed genes in Snail over-expressed GC tissues, including genes related to metastasis, invasion. Based on above results, it was suggested that Snail plays a significant role in invasiveness/migratory ability of GCs. In addition, Snail might be used to predictive biomarker for evaluation of prognosis or aggressiveness in GCs. 48 primary gastric adenocarcinoma fresh frozen tissues were used for microarray. All the tissues were obtained after curative resection after pathologic confirm at Pusan National University Hospital (PNUH, Busan, Korea) and Cheonnam University Hospital (CNUH, Cheonnam, Korea). Microarray experiment and data analysis were done at Cancer research institute, PNUH, Busan, Korea.
Project description:Epithelial-mesenchymal transition (EMT) is in the highlights as a significant role in tumor progression and invasion. Snail was known as the one of regulators of EMT in various malignant tumors. The aim of this study was to investigate the effect of Snail on invasiveness/migratory ability of gastric cancer cell lines and clinicopathological and prognostic significance of Snail over-expression using immunohistochemistry in tissue microarray of 314 gastric adenocarcinomas (GC). Differential gene expression in Snail over-expressed GC was investigated using cDNA microarray analysis. Silencing of Snail by ShRNA induced decreased of invasion, migration of gastric cancer cell lines. In contrast, over-expression of Snail induced increased invasiveness and migratory ability of gastric cancer cell lines in accordance increase of VEGF and MMP11. Furthermore, the over-expression of Snail (≥75% nuclear staining of Snail) was significantly associated with tumor progression (p<0.0001), lymph node metastases (p=0.002), lymphovascular invasion (p=0.002), and perineural invasion (p=0.002) in 314 GC patient. Snail over-expression was also associated with poor prognosis (shorter survival) in GC patients (p=0.023). cDNA microarray revealed 213 differential expressed genes in Snail over-expressed GC tissues, including genes related to metastasis, invasion. Based on above results, it was suggested that Snail plays a significant role in invasiveness/migratory ability of GCs. In addition, Snail might be used to predictive biomarker for evaluation of prognosis or aggressiveness in GCs.
Project description:Gastric cancer (GC) is a leading cause of cancer-induced mortality with poor prognosis with metastasis. However, the mechanism of gastric carcinoma lymph node metastasis remains unknown due to traditional bulk-leveled approaches mask roles of subpopulations. To answer questions from the gastric carcinoma intratumoral perspective in the metastasis, we performed single-cell level analysis on three gastric cancer patients with primary cancer and paired metastatic lymph node cancer tissues using scRNA-seq. Results showed distinct carcinoma profiles from each patient, and diverse microenvironmental subsets were shared by a different patient. Clustering data showed significant intratumoral heterogeneity. Results also revealed a subgroup of cells bridging the metastatic group and primary group, implying the transition state of cancer during the metastatic process. In the present study we obtained a more comprehensive picture over gastric cancer lymph node metastasis, and we discovered some GC lymph node metastasis marker genes (ERBB2, CLDN11 and CDK12), as well as potential gastric cancer evolutionary driving genes (FOS and JUN), which provide a basis for the treatment of heterogeneity.
Project description:Lymph node metastasis is one of the main causes for the low survival rate of gastric cancer patients. Exploring key proteins players in the progression of gastric adenocarcinoma (GAC) may provide new prognostic parkers and therapeutic strategies. we applied proteomic analysis to compare tumor tissues from GAC patients with or without lymph node metastasis, and captured unique molecular features of GAC patients with LNM. Analysis of the phosphoproteome provided a snapshot of abnormal phosphorylation signaling pathways and abnormal kinases activities. Furthermore, we found that TNXB and SPON1, two ECM proteins are associated with LNM status in GAC patients. Thus, our study suggests a number of proteins and kinases that has the potential to serve as prognosis markers to predict patient outcome.
Project description:The expression of miRNA in cancer tissues of gastric cancer patients with different lymph node stages was compared. N0 indicated no lymph node metastasis, and N3 indicated 7 or more lymph node metastasis
Project description:Human primary gastric cancer tissue SAGE libraries. Profile of the genes expressed in well and poorly differentiated gastric cancer, early and advanced gastric cancer, scirrhous type gastric cancer, and lymph node metastasis determined through SAGE. Keywords = gastric cancer, histology, early gastric cancer, advanced gastric cancer, lymph node metastasis, scirrhous type gastric cancer Keywords: other
Project description:Lymph node metastasis is a poor prognosis indicator in esophageal cancer. Although tumor spreading currently forms the main basis for therapy selection, the molecular mechanisms underlying the metastatic pathway remain insufficiently understood. Several studies aimed to investigate these mechanisms but focused mainly on regulatory patterns in the tumors themselves and/or the invaded lymph nodes. To date no study has yet investigated the potential changes on transcription level, which take place within the yet non-invaded niche. Here we provide a comprehensive description of these regulations in patients. In this study the transcriptomic profiles of regional lymph nodes were determined for two patient groups: patients classified as pN1 (metastasis) or pN0 (no metastasis) respectively. All investigated lymph nodes, also those from pN1 patients, were still free of metastasis. The gene expression data was obtained via microarray analysis. Top candidates were validated via PCR and immunohistochemistry. The results show that regional lymph nodes of pN1 patients differ decisively from those of pN0 patients – even before metastasis has taken place. In the pN0 group distinct immune response patterns were observed. In contrast, lymph nodes of the pN1 group exhibited a clear profile of reduced immune response and reduced proliferation, but increased apoptosis, enhanced hypoplasia and morphological conversion processes. DKK1 was the most significant gene associated with the molecular mechanisms taking place in lymph nodes of patients suffering from metastasis (pN1). We assume that the two molecular profiles observed constitute two different stages of a progressive disease. Finally we suggest that DKK1 might play an important role within the mechanisms leading to lymph node metastasis. First, samples were classified according to the principal status of the patients exhibiting (pN1 group) or non-exhibiting (pN0 group) metastasis in regional lymph nodes. The comparison of pN1 and pN0 patients should highlight the general differences in regulations that might lead to or prevent from metastasis. Second, two lymph node samples were collected from each patient, one node located close to the tumor (regional) and the second node distant to the tumor. While the distant nodes served as reference sample the regional nodes were investigated for transcriptional regulations. Key to the work presented here is that all nodes investigated were made sure to be still metastasis free, independent of the patients’ pN1/pN0 classification and of the location relative to the tumor. This should allow the identification of early changes occurring prior to metastasis homing.
Project description:Comparison between the copy number of differentially methylated sites between lymph node metastasis from melanoma patients with good prognosis and melanoma brain metastasis. All samples are taken from different patients, and were established as cell lines in the John Wayne Cancer Institute. Sixteen metastatic melanomas were run on Affymetrix Genome-Wide Human SNP Array 6.0. Lymph node metastases and brain metastases genetic copy number variations were compared.
Project description:Lymph node status is a crucial predictor for the overall survival of invasive breast cancer. However, lymph node involvement is only detected in about half of HER2 positive patients. Currently, there are no biomarkers available for distinguishing small size HER2-positive breast cancers with different lymph node statuses. Thus, in the present study, we applied label-free quantitative proteomic strategy to construct plasma proteomic profiles of ten patients with small size HER2-positive breast cancers (5 patients with lymph node metastasis versus 5 patients with lymph node metastasis).
Project description:Lymph node metastasis is a poor prognosis indicator in esophageal cancer. Although tumor spreading currently forms the main basis for therapy selection, the molecular mechanisms underlying the metastatic pathway remain insufficiently understood. Several studies aimed to investigate these mechanisms but focused mainly on regulatory patterns in the tumors themselves and/or the invaded lymph nodes. To date no study has yet investigated the potential changes on transcription level, which take place within the yet non-invaded niche. Here we provide a comprehensive description of these regulations in patients. In this study the transcriptomic profiles of regional lymph nodes were determined for two patient groups: patients classified as pN1 (metastasis) or pN0 (no metastasis) respectively. All investigated lymph nodes, also those from pN1 patients, were still free of metastasis. The gene expression data was obtained via microarray analysis. Top candidates were validated via PCR and immunohistochemistry. The results show that regional lymph nodes of pN1 patients differ decisively from those of pN0 patients – even before metastasis has taken place. In the pN0 group distinct immune response patterns were observed. In contrast, lymph nodes of the pN1 group exhibited a clear profile of reduced immune response and reduced proliferation, but increased apoptosis, enhanced hypoplasia and morphological conversion processes. DKK1 was the most significant gene associated with the molecular mechanisms taking place in lymph nodes of patients suffering from metastasis (pN1). We assume that the two molecular profiles observed constitute two different stages of a progressive disease. Finally we suggest that DKK1 might play an important role within the mechanisms leading to lymph node metastasis.